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Abstract

We are developing a system to predict the arrival of interplanetary (IP) shocks at the Earth. These events are routinely detected

by the Electron, Proton, and Alpha Monitor (EPAM) instrument aboard NASA�s ACE spacecraft, which is positioned at Lagrange

Point 1 (L1). In this work, we use historical EPAM data to train an IP shock forecasting algorithm. Our approach centers on the

observation that these shocks are often preceded by identifiable signatures in the energetic particle intensity data. Using EPAM data,

we trained an artificial neural network to predict the time remaining until the shock arrival. After training this algorithm on 37

events, it was able to forecast the arrival time for 19 previously unseen events. The average uncertainty in the prediction 24 h in

advance was 8.9 h, while the uncertainty improved to 4.6 h when the event was 12 h away. This system is accessible online, where

it provides predictions of shock arrival times using real-time EPAM data.

� 2005 Published by Elsevier Ltd on behalf of COSPAR.
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1. Introduction

Interplanetary (IP) shocks are often launched by

coronal mass ejections (CMEs). The shocked region of
the solar wind can be a source of locally accelerated par-

ticles whose energies typically reach into the MeV range

(Kahler et al., 1984), but can extend into the GeV range

for strong shocks. Because the shock is created near the

Sun, the initial particle signature as seen by ACE at L1

shows strong velocity dispersion (i.e., the higher energy

particles reach the Electron, Proton, and Alpha Monitor

(EPAM) detector sooner than low-energy particles orig-
inating from the same event). Forewarning of this initial

particle burst from a newly launched CME would re-

quire more detailed knowledge and monitoring of the

Sun�s active regions than is currently available.
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Intensity evolution following the velocity-dispersed

onset typically shows increasing numbers of particles,

especially for shocks which stay magnetically connected

to L1 as they propagate through the solar wind. As the
shock gets closer to the spacecraft, particle intensities

rise dramatically in a non-dispersive pattern (i.e., all

energies of particle rise simultaneously) since the source

of acceleration is now close to the detector. We describe

here an empirical technique which uses the evolution of

the particle intensity after the initial, velocity-dispersed

onset of the shock to predict the arrival time of the sub-

sequent peak in intensity associated with the shock
passage.

The enhanced particle intensities associated with IP

shock passage are commonly referred to as energetic

storm particle (ESP) events due to their close association

with geomagnetic storms. During an ESP event, the

number of incident ions with energies above 10 MeV

can increase by several orders of magnitude, and some

mailto:jon.vandegriff@jhuapl.edu


Table 1

Inputs to the neural network

Input name Description

P1 Proton intensity, energy 47–65 keV

P3 Proton intensity, energy 112–187 keV

P5 Proton intensity, energy 310–580 keV

P6 Proton intensity, energy 760–1220 keV

P7 Proton intensity, energy 1060–1910 keV

n Anisotropy coefficient

SS Spectral slope

IMP Intensity at midpoint

SS 0 Spectral slope derivative

IMP0 Intensity at midpoint derivative
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events show significant increases in fluence for ions

above 30 MeV. Because of the radiation hazards to

astronauts and space-embedded technology posed by

energetic particles, there is considerable interest in fore-

casting large IP shock-driven particle events. Further-

more, because large ESP events are infrequent, they
are difficult to study. However, the same acceleration

mechanism operates on high energy (above 30 MeV)

and low energy (below 10 MeV) particles, and thus we

gain significant insight into ESP characteristics and evo-

lution by studying the lower energy, lower intensity

events, which are common.
2. ACE/EPAM data description

NASA�s Advanced Composition Explorer (ACE)

spacecraft is stationed in a halo orbit around Lagrange

point L1, which is about 1.5 million km from the Earth

(235 Earth radii, RE), or about 1% of the distance from

the Earth to the Sun. The EPAM instrument on ACE

measures low energy charged particles at L1 (Gold
et al., 1998). Data from EPAM, as well as solar wind

data from other instruments on ACE, are telemetered

back and published on the web by NOAA in real-time

(Zwickl et al., 1998), providing a continuous upstream

monitor of the particle activity and solar wind behavior.

Simple monitoring of real-time intensity values observed

at L1 can be used to provide a short-term prediction of

what conditions may soon reach the Earth. For exam-
ple, given a shock traveling with the solar wind at

500 km/s, EPAM real-time data gives roughly a 45 min

lead time on possible future particle behavior at the

Earth. Our goal is to increase this lead time by using

EPAM data ahead of the shock to predict the arrival

time of the intensity burst associated with shock

passage.

EPAM measurements include ion intensities for sev-
eral energy channels. Almost all of the ions measured

are protons, but other less abundant species (mostly

He2+, at the few percent level) are also present. Neither

this ion contamination nor the occasional electron con-

tamination are removed from our input data, since it is

unlikely that this could be easily and reliably done in a

real-time system.

Based on a list of about 160 shocks from August
1997 to December 2001 (Ho et al., 2003), we selected

56 events showing both velocity dispersion in the

shock onset and a peak intensity greater than 105 par-

ticles/(s cm2 ster keV) for the 47–65 keV proton chan-

nel. These selection criteria excluded 75 small shocks

(i.e., peak intensity below 105) and 24 shocks which,

although strong enough, did not exhibit the dispersive

precursor. The start time for each event was
established using a simple trigger designed to detect

velocity dispersion; this trigger can also be used in
real-time. The trigger examines the spectral slope,

the average height of the energy spectrum, and the
time derivatives of these quantities. It reliably detect

onsets with a very low false alarm rate. We divided

these shocks into training and test data sets. Each se-

quence (from onset to shock arrival) included an aver-

age of 530 data points (spanning 44.2 h).

As inputs to our empirical model, we use the five

ion channels provided by the NOAA real-time system,

which are listed in Table 1. These intensities are 5-min
averages of proton intensity in non-contiguous energy

bands ranging from 47 keV to 1.9 MeV. We also use

an anisotropy coefficient, n, which characterizes angu-

lar intensity variations that indicate the direction of

shock propagation (Zwickl and Webber, 1976). The

remaining four inputs listed in Table 1 are derived

quantities based on the energy spectrum of the five

proton channels. The spectral slope (SS) is the steep-
ness of a line (in log intensity – log energy space) fit

to the intensity points. The intensity midpoint (IMP)

is the intensity level at the middle of the spectrum.

The time derivatives of these quantities (SS 0 and

IMP 0) are also included. All inputs are smoothed

based on preceding values in the data stream.
3. IP shock prediction method

In many cases, precursor signatures exist in the parti-

cle data which give clues about the impending shock ar-

rival. The data set shown in Fig. 1(a) provides a clear

example of this velocity-dispersed precursor, which ap-

pears as a contraction or squeezing of the proton inten-

sity values beginning at hour 14 of day 248. However, as
the shock gets closer to the Earth, the particle intensity

values for various energy channels exhibit more complex

behavior. Therefore, instead of attempting to heuristi-

cally model the shock evolution, we have devised an

empirical approach that predicts the arrival time of the

shock.

The intensity time series data plus other derived

quantities listed in Table 1 serve as input data to an



Fig. 1. Each pair of panels shows an intensity evolution profile on the left and a forecast evaluation on the right. The intensity plots show the four

proton channels used as inputs; the lowest-energy channel is the topmost line. The start and stop times for the data fed into the forecasting algorithm

are indicated with vertical lines labeled according to the onset and shock arrival times for the event. In the forecast evaluations, the neural network is

attempting to provide a countdown to the shock arrival, similar to the straight line shown as the ideal forecast.

(a) Particle intensities for test sequence 9. (b) Predicted time until shock arrival.

(c) Particle intensities for test sequence 12. (d) Predicted time until shock arrival.

(e) Particle intensities for test sequence 15. (f) Predicted time until shock arrival.
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artificial neural network which is then trained to predict

the time remaining until the shock arrives. We use a rel-

atively new form of recurrent neural net (Lo, 1994,

1999), which contains tune-delayed links connecting all

the nodes in any hidden layer with all the other nodes

in that same hidden layer. Such time-delayed connec-

tions: (1) represent an explicit treatment of the time do-

main of the problem, (2) give the network a ‘‘memory’’
with a decay time proportional to the time step, and (3)

are crucial in allowing the networks to be able to capture

the behavior of arbitrary dynamical systems (Lo, 1998).

We use a fixed step size and momentum constant, both

of which are manually tuned.
The network we used consisted of 10 input nodes

(one for each of the inputs in Table 1), one output node

(to predict the remaining time), and two layers of four

hidden nodes each. Input values to the network were

scaled and shifted to ensure that all values fall within

the sensitivity range of the hyperbolic tangent used as

an activation function. Logarithmic transformations

were used on intensity values and linear transformations
on all other values. There is an inherent assumption,

when using this network, that there is in fact an impend-

ing event in the data stream. If not, the predictions will

be unreliable (as the network was only trained on true

events), usually outputting a single very high value.
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4. Results and analysis

At each time point in the time-series input data for a

given shock, the network provides its guess for the time

remaining until the shock arrival. During training, dif-

ferences between this guess and the actual time to arrival
are used to adjust the internal weights of the network.

During testing, the weights are fixed, and differences be-

tween the network estimate and the actual remaining

time are used to assess the performance of the network

on input sequences it has not seen before.

Training was performed using 37 of the 56 selected

IP shocks. After presenting each training sequence to

the network 100 times, the performance of the network
was assessed by having it forecast arrival time

countdowns for the 19 shocks not used during

training.

Fig. 1 shows input sequences and forecasts for 3 of

the 19 shocks used in testing. The left panels (a, c, and

e) show the time evolution of intensity values for each

particle channel. The topmost trace in each intensity

plot corresponds to the lowest energy channel P1 and
each successively lower intensity trace corresponds to

the next higher energy channel, from P3 to P7. Labeled

vertical lines indicate the onset and shock times. Only

the data between these times were used as input data,

although it is helpful to see data outside this region to

visually understand the event. Although also used as in-

puts, the time evolution of the anisotropy coefficient and

derived spectral properties are not shown.
The panels on the right (b, d, and f) show a compar-

ison of the forecasted and actual arrival times. Since the

true output is always a countdown until the shock arri-

val, the ideal output is always a straight line with a slope

of �1. This plot provides a simple way of determining
Fig. 2. The bottom axis is time until shock arrival and the left axis is mean

obtained at each time point by averaging the absolute error made for each seq

corresponds to the error made by a simplistic, fixed event length forecasting

(a) Mean absolute error on 37 training data sets.
how the forecast arrival time compares with the true

countdown.

Test sequence 9 (Fig. 1(a) and (b)) exhibits very good

performance. The neural network briefly under-esti-

mates the shock arrival time by about 10 h when it is still

44 h away, and it over-estimates the arrival time by
about 10 h when it is 18 h away, but overall its predic-

tions align well with the true arrival time. Five hours be-

fore the shock arrival, the predicted countdown flattens

out, predicting longer arrival times than those in the ac-

tual countdown. This is most likely caused by the fact

that there is a smaller peak just before the main peak,

and the decline in flux following the smaller peak causes

the forecasting algorithm to delay its countdown. In test
sequence 12 (Fig. 1(c) and (d)), predictions made more

than 24 h in advance of the shock under-estimate the ar-

rival time by up to 8 h. From 20 to 10 h before the event,

the prediction is very accurate, although in the final 10 h

before the shock, the forecast arrival time exceeds actual

shock arrival time. Test sequence 15 (Fig. 1(c) and (d))

indicates a situation where the algorithm essentially

failed to detect the oncoming burst. Probably this is
due to the fact that, except for a non-dispersive rise at

hour 6 of day 167, the intensity traces are relatively flat

for most of this event. In most events, it is the rising

intensity values that drive the countdown. Note that this

event has only a weakly dispersive signature at the onset.

Results over the entire training and test sets are sum-

marized in Fig. 2. At time t, we calculate two values: Pt

is the predicted time until arrival, andAt is the actual tune
until arrival. The absolute error in the prediction time is

calculated as |Pt�At|. Fig. 2(a) shows the absolute errors

averaged over all training datasets as a function of count-

down time. Because each event used to construct the aver-

age extends back a different amount of time before the
absolute error in the forecasted arrival time. Mean absolute error is

uence that had a forecast at that time. The horizontal ‘‘Baseline’’ error

model, which is based on the average event length in the training data.

(b) Mean absolute error on 19 test data sets.
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shock, the absolute error values are averages of a variable

number of points. For example, at 60 h before the shock,

there are only a few datasets contributing to the mean

absolute error at this time. However, at 12 h before the

shock, all of the datasets have contributing arrival esti-

mates. Fig. 2(b) plots the mean absolute error for the 19
testing data sets. Both training and testing datasets indi-

cate forecasting errors which are decreasing until about

12 hbefore the shock arrival, afterwhich they rise slightly.

This is likely due to the fact that particle behavior in the

few hours before the shock arrives is very different from

longer-term trends. A single network cannot adequately

predict both kinds of behavior. We are investigating the

use of an additional network, specifically trained for
short-term predictions.

Both (a) and (b) in Fig. 2 also show the error for a

baseline prediction scheme that uses the average event

length in the training events to estimate the arrival time.

The average time from onset to shock arrival for the 37

training events is 1.84 days (or 44.2 h). As a forecast,

this fixed event duration gives a constant prediction er-

ror for each event. An average of the absolute error
using this approach is about 14.5 for both training

and test data sets. The network consistently beats this

simple forecast.

Other models exist for computing arrival times of IP

shocks, including the shock time of arrival (STOA)

model (Dryer and Smart, 1984) and the Interplanetary

Shock Propagation Model (ISPM) (Smith and Dryer,

1990). These models rely on radio burst information
(start time, location, drift speed, and burst duration)

as well as H-alpha, GOES, and X-ray data, but no par-

ticle data. A recent study (Kadinsky-Cade et al., 1998)

of shocks in the period 1991–1997 using these models

along with IMP-8 and WIND data (for evaluation)

found that the average deviations between the predicted

shock arrival tune and the nearest actual arrival time

were ±39 h for the ISPM model and ±36 h for the
STOA model. The neural network described here, pro-

vides an improved indicator of shock events mainly

through its direct use of particle data.
5. Conclusions

We have demonstrated that an artificial neural net-
work can be trained to predict the shock arrival with

better accuracy than existing methods. We have several
ideas for expanding this work. First, we plan to include

other sources of information about the interplanetary

medium, including the observed magnetic field and plas-

ma characteristics. This information is continuously col-

lected by other instruments on ACE. Second, we are

also developing methods to provide an estimate for the
error in our predictions. Finally, we are in the process

of establishing this system for real-time access, at

http://sd-www.jhuapl.edu/ACE/EPAM/RISP/. We view

this work as a promising first step in providing predic-

tive information about impending shocks. These ad-

vance warnings are useful as space weather monitors,

especially to satellite and communications operators,

as well as to the human space flight community.
References

Dryer, M., Smart, D.F. Dynamical methods of coronal transients and

interplanetary disturbances. Adv. Space Res. 4, 291–301, 1984.

Gold, R.E., Krimigis, S.M., Hawkins, S.E., Haggerty, D.K., Lohr,

D.A., Fiore, E., Armstrong, T.P., Holland, G., Lanzerotti, L.J.

Electron, proton and alpha monitor on the advanced composition

explorer spacecraft. Space Sci. Rev. 86, 541–562, 1998.

Ho, G.C., Lario, D., Decker, R.B., Roelof, E.C., Desai, M.I., Smith,

C.W. Energetic electrons associated with transient interplanetary

shocks: evidence for weak interaction, in: Proceedings of the 28th

International Cosmic Ray Conference, pp. 3689–3692, 2003.

Kadinsky-Cade, K., Quigley, S., Ginet, G. Validation of interplanetary

shock propagation models. Trans. Am. Geophys. Un. 79, F712,

1998.

Kahler, S.W., Sheeley Jr., N.R., Howard, R.A., Koomen, M.J.,

Michels, D.J., McGuire, R.E., von Rosenvinge, T.T., Reams, D.V.

Associations between coronal mass ejections and solar energetic

proton events. J. Geophys. Res. 89, 9683–9693, 1984.

Lo, J.T. Synthetic approach to optimal filtering. IEEE Trans. Neural

Networ. 5 (5), 803–811, 1994.

Lo, J. Universal neuroapproximation of dynamic systems for robust

identification, in: Proceedings of the 1998 International Joint

Conference on Neural Networks, Ancorage, Alaska, pp. 2429–

2434, 1998.

Lo, J., Recursive neural filters. US Patent 5, 963, 929, 1999.

Smith, Z., Dryer, M. MHD study of temporal and spatial evolution of

simulated interplanetary shocks in the ecliptic plane within 1 AU.

Sol. Phys. 129, 387–405, 1990.

Zwickl, R.D., Dogget, K.A., Sahm, S., Barrett, W.P., Grubb, R.N.,

Detman, T.R., Raben, V.J., Smith, C.W., Riley, P., Gold, R.E.,

Mewaldt, R.A., Maruyama, T. The NOAA real-time solar-wind

(RTSW) system using ACE data. Space Sci. Rev. 86, 633–648,

1998.

Zwickl, R.D., Webber, W.R. Limitations of the COS approximation as

applied to the cosmic-ray anisotropy. Nucl. Instrum. Methods 138

(1), 191–199, 1976.

http://sd-www.jhuapl.edu/ACE/EPAM/RISP/

	Forecasting space weather: Predicting interplanetary shocks using neural networks
	Introduction
	ACE/EPAM data description
	IP shock prediction method
	Results and analysis
	Conclusions
	References


