
Constrained K-means Clustering with Background Knowledge

Kiri Wagstaff wkiri@cs.cornell.edu

Claire Cardie cardie@cs.cornell.edu

Department of Computer Science, Cornell University, Ithaca, NY 14853 USA

Seth Rogers rogers@rtna.daimlerchrysler.com

Stefan Schroedl schroedl@rtna.daimlerchrysler.com

DaimlerChrysler Research and Technology Center, 1510 Page Mill Road, Palo Alto, CA 94304 USA

Proceedings of the Eighteenth International Conference on Machine Learning, 2001, p. 577–584.

Abstract

Clustering is traditionally viewed as an un-
supervised method for data analysis. How-
ever, in some cases information about the
problem domain is available in addition to
the data instances themselves. In this paper,
we demonstrate how the popular k-means
clustering algorithm can be profitably modi-
fied to make use of this information. In ex-
periments with artificial constraints on six
data sets, we observe improvements in clus-
tering accuracy. We also apply this method
to the real-world problem of automatically
detecting road lanes from GPS data and ob-
serve dramatic increases in performance.

1. Introduction

Clustering algorithms are generally used in an un-
supervised fashion. They are presented with a set of
data instances that must be grouped according to some
notion of similarity. The algorithm has access only to
the set of features describing each object; it is not given
any information (e.g., labels) as to where each of the
instances should be placed within the partition.

However, in real application domains, it is often the
case that the experimenter possesses some background
knowledge (about the domain or the data set) that
could be useful in clustering the data. Traditional clus-
tering algorithms have no way to take advantage of this
information even when it does exist.

We are therefore interested in ways to integrate back-
ground information into clustering algorithms. We
have previously had success with a modified version of
COBWEB (Fisher, 1987) that uses background infor-
mation about pairs of instances to constrain their clus-

ter placement (Wagstaff & Cardie, 2000). K-means
is another popular clustering algorithm that has been
used in a variety of application domains, such as image
segmentation (Marroquin & Girosi, 1993) and infor-
mation retrieval (Bellot & El-Beze, 1999). Due to its
widespread use, we believe that developing a modified
version that can make use of background knowledge
can be of significant use to the clustering community.

The major contributions of the current work are two-
fold. First, we have developed a k-means variant that
can incorporate background knowledge in the form
of instance-level constraints, thus demonstrating that
this approach is not limited to a single clustering al-
gorithm. In particular, we present our modifications
to the k-means algorithm and demonstrate its perfor-
mance on six data sets.

Second, while our previous work with COBWEB was
restricted to testing with random constraints, we
demonstrate the power of this method applied to a
significant real-world problem (see Section 6).

In the next section, we provide some background on
the k-means algorithm. Section 3 examines in de-
tail the constraints we propose using and presents our
modified k-means algorithm. Next, we describe our
evaluation methods in Section 4. We present experi-
mental results in Sections 5 and 6. Finally, Section 7
compares our work to related research and Section 8
summarizes our contributions.

2. K-means Clustering

K-means clustering (MacQueen, 1967) is a method
commonly used to automatically partition a data set
into k groups. It proceeds by selecting k initial cluster
centers and then iteratively refining them as follows:

1. Each instance di is assigned to its closest cluster



center.

2. Each cluster center Cj is updated to be the mean
of its constituent instances.

The algorithm converges when there is no further
change in assignment of instances to clusters.

In this work, we initialize the clusters using instances
chosen at random from the data set. The data sets we
used are composed solely of either numeric features
or symbolic features. For numeric features, we use a
Euclidean distance metric; for symbolic features, we
compute the Hamming distance.

The final issue is how to choose k. For data sets
where the optimal value of k is already known (i.e., all
of the UCI data sets), we make use of it; for the real-
world problem of finding lanes in GPS data, we use
a wrapper search to locate the best value of k. More
details can be found in Section 6.

3. Constrained K-means Clustering

We now proceed to a discussion of our modifications
to the k-means algorithm. In this work, we focus on
background knowledge that can be expressed as a set
of instance-level constraints on the clustering process.
After a discussion of the kind of constraints we are
using, we describe the constrained k-means clustering
algorithm.

3.1 The Constraints

In the context of partitioning algorithms, instance-
level constraints are a useful way to express a priori
knowledge about which instances should or should not
be grouped together. Consequently, we consider two
types of pairwise constraints:

• Must-link constraints specify that two instances
have to be in the same cluster.

• Cannot-link constraints specify that two in-
stances must not be placed in the same cluster.

The must-link constraints define a transitive binary re-
lation over the instances. Consequently, when making
use of a set of constraints (of both kinds), we take a
transitive closure over the constraints.1 The full set
of derived constraints is then presented to the clus-
tering algorithm. In general, constraints may be de-

1Although only the must-link constraints are transitive,
the closure is performed over both kinds because, e.g, if di
must link to dj which cannot link to dk, then we also know
that di cannot link to dk.

Table 1. Constrained K-means Algorithm

cop-kmeans(data set D, must-link constraints Con= ⊆
D ×D, cannot-link constraints Con6= ⊆ D ×D)

1. Let C1 . . . Ck be the initial cluster centers.

2. For each point di in D, assign it to the closest cluster
Cj such that violate-constraints(di, Cj, Con=,
Con6=) is false. If no such cluster exists, fail
(return {}).

3. For each cluster Ci, update its center by averaging all
of the points dj that have been assigned to it.

4. Iterate between (2) and (3) until convergence.

5. Return {C1 . . . Ck}.
violate-constraints(data point d, cluster C, must-
link constraints Con= ⊆ D × D, cannot-link constraints
Con6= ⊆ D ×D)

1. For each (d, d=) ∈ Con=: If d= 6∈ C, return true.

2. For each (d, d6=) ∈ Con6=: If d6= ∈ C, return true.

3. Otherwise, return false.

rived from partially labeled data (cf. Section 5) or from
background knowledge about the domain or data set
(cf. Section 6).

3.2 The Constrained Algorithm

Table 1 contains the modified k-means algorithm
(COP-KMEANS) with our changes in bold. The algo-
rithm takes in a data set (D), a set of must-link con-
straints (Con=), and a set of cannot-link constraints
(Con 6=). It returns a partition of the instances in D
that satisfies all specified constraints.

The major modification is that, when updating clus-
ter assignments, we ensure that none of the speci-
fied constraints are violated. We attempt to assign
each point di to its closest cluster Cj . This will suc-
ceed unless a constraint would be violated. If there
is another point d= that must be assigned to the
same cluster as d, but that is already in some other
cluster, or there is another point d 6= that cannot be
grouped with d but is already in C, then d cannot
be placed in C. We continue down the sorted list
of clusters until we find one that can legally host d.
Constraints are never broken; if a legal cluster cannot
be found for d, the empty partition ({}) is returned.
An interactive demo of this algorithm can be found at
http://www.cs.cornell.edu/home/wkiri/cop-kmeans/.



4. Evaluation Method

The data sets used for the evaluation include a “cor-
rect answer” or label for each data instance. We use
the labels in a post-processing step for evaluating per-
formance.

To calculate agreement between our results and the
correct labels, we make use of the Rand index (Rand,
1971). This allows for a measure of agreement between
two partitions, P1 and P2, of the same data set D.
Each partition is viewed as a collection of n∗ (n−1)/2
pairwise decisions, where n is the size of D. For each
pair of points di and dj in D, Pi either assigns them
to the same cluster or to different clusters. Let a be
the number of decisions where di is in the same cluster
as dj in P1 and in P2. Let b be the number of deci-
sions where the two instances are placed in different
clusters in both partitions. Total agreement can then
be calculated using

Rand(P1, P2) =
a+ b

n ∗ (n− 1)/2
.

We used this measure to calculate accuracy for all of
our experiments. We were also interested in testing
our hypothesis that constraint information can boost
performance even on unconstrained instances. Conse-
quently, we present two sets of numbers: the overall
accuracy for the entire data set, and accuracy on a
held-out test set (a subset of the data set composed of
instances that are not directly or transitively affected
by the constraints). This is achieved via 10-fold cross-
validation; we generate constraints on nine folds and
evaluate performance on the tenth. This enables a true
measurement of improvements in learning, since any
improvements on the held-out test set indicate that
the algorithm was able to generalize the constraint in-
formation to the unconstrained instances as well.

5. Experimental Results Using
Artificial Constraints

In this section, we report on experiments using six
well-known data sets in conjunction with artificially-
generated constraints. Each graph demonstrates the
change in accuracy as more constraints are made avail-
able to the algorithm. The true value of k is known
for these data sets, and we provided it as input to our
algorithm.

The constraints were generated as follows: for each
constraint, we randomly picked two instances from the
data set and checked their labels (which are available
for evaluation purposes but not visible to the cluster-

ing algorithm). If they had the same label, we gener-
ated a must-link constraint. Otherwise, we generated
a cannot-link constraint. We conducted 100 trials on
each data set (where a trial is one 10-fold cross valida-
tion run) and averaged the results.

In our previous work with COP-COBWEB, a con-
strained partitioning variant of COBWEB, we made
use of three UCI data sets (soybean, mushroom, and
tic-tac-toe) and one “real-world” data set that involved
part of speech data (Wagstaff & Cardie, 2000). In this
work, we replicated our COP-COBWEB experiments
for the purpose of comparison with COP-KMEANS.
COBWEB is an incremental algorithm, while k-means
is a batch algorithm. Despite their significant algo-
rithmic differences, we found that both algorithms im-
proved almost identically when supplied with the same
amount of background information.

Figure 1. COP-KMEANS results on soybean

The first data set of interest is soybean, which has
47 instances and 35 attributes. Four classes are rep-
resented in the data. Without any constraints, the
k-means algorithm achieves an accuracy of 87% (see
Figure 1). Overall accuracy steadily increases with
the incorporation of constraints, reaching 99% after
100 random constraints.

We applied the Rand index to the set of constraints
vs. the true partition. Because the Rand index views
a partition as a set of pairwise decisions, this allowed us
to calculate how many of those decisions were ’known’
by the set of constraints.2 For this data set, 100 ran-
dom constraints achieve an average accuracy of 48%.
We can therefore see that combining the power of clus-
tering with background information achieves better
performance than either in isolation.

2For clarity, these numbers do not appear in the figure.



Held-out accuracy also improves, achieving 98% with
100 constraints. This represents a held-out improve-
ment of 11% over the baseline (no constraints). Simi-
larly, COP-COBWEB starts at 85% accuracy with no
constraints, reaching a held-out accuracy of 96% with
100 random constraints.3

Figure 2. COP-KMEANS results on mushroom

We next turn to the mushroom data set, with 50 in-
stances and 21 attributes.4 It contains two classes.
In the absence of constraints, the k-means algorithm
achieves an accuracy of 69% (Figure 2). After incor-
porating 100 random constraints, overall accuracy im-
proves to 96%. In this case, 100 random constraints
achieve 73% accuracy before any clustering occurs.
Held-out accuracy climbs to 82%, yielding an improve-
ment of 13% over the baseline. COP-COBWEB starts
at 67% accuracy with no constraints, with held-out
accuracy reaching 83% with 100 constraints.

The third data set under consideration is the part-of-
speech data set (Cardie, 1993). A subset of the full
data set, it contains 50 instances, each described by
28 attributes. There are three classes in this data set.
Without constraints, the k-means algorithm achieves
an accuracy of 58% (We have omitted the graph for
this data set, as COP-KMEANS and COP-COBWEB
have very similar performance, just as shown in the
previous two figures.). After incorporating 100 ran-
dom constraints, overall accuracy improves to 87%.
Here, 100 random constraints attain 56% accuracy.
Held-out accuracy climbs to 70%, yielding an im-
provement of 12% over the baseline. Likewise, COP-

3The COP-COBWEB results are not reproduced in
graph form here, but can be found in full detail in Wagstaff
and Cardie (2000).

4This is a subset of the full mushroom data set, to match
the COP-COBWEB experiments.

COBWEB starts at 56% accuracy with no constraints,
reaching a held-out accuracy of 72% with 100 con-
straints.

Figure 3. COP-KMEANS results on tic-tac-toe

Finally, we focus on the tic-tac-toe data set.5 There
are 100 instances in this data set, each described by
9 attributes. There are two classes in this data set.
Without constraints, the k-means algorithm achieves
an accuracy of 51% (Figure 3). After incorporating
500 random constraints, overall accuracy is 92%. This
set of constraints achieves 80% accuracy in isolation.
Held-out accuracy reaches 56%, achieving a 5% in-
crease in accuracy.

COP-COBWEB behaves somewhat worse on this data
set, with held-out performance staying roughly at the
49% mark. We believe that this data set is particu-
larly challenging because the classification of a board
as a win or a loss for the X player requires extracting
relational information between the attributes — infor-
mation not contained in our instance-level constraints.

In contrast to the COP-COBWEB experiments, which
made use of data sets with symbolic (categorical)
attributes, we also experimented with using COP-
KMEANS on two UCI data sets with numeric (contin-
uous) attributes. On the iris data set (150 instances,
four attributes, three classes), incorporating 400 ran-
dom constraints yielded a 7% increase in held-out ac-
curacy. Overall accuracy climbed from 84% to 98%,
and the set of constraints achieved 66% accuracy. Be-
havior on the wine data set (178 instances, 13 at-
tributes, three classes) was similar to that of the tic-
tac-toe data set, with only marginal held-out improve-
ment (although overall accuracy, as usual, increased

5Because this data set is larger, we experimented with
more constraints.



dramatically, from 71% to 94%). The constraint set
achieved 68% in isolation.

What we can conclude from this section is that even
randomly-generated constraints can improve cluster-
ing accuracy. As one might expect, the improvement
obtained depends on the data set under consideration.
If the constraints are generalizable to the full data set,
improvements can be observed even on unconstrained
instances.

6. Experimental Results on GPS Lane
Finding

In all of the above experiments, the constraints we ex-
perimented with were randomly generated from the
true data labels. To demonstrate the utility of con-
strained clustering with real domain knowledge, we
applied COP-KMEANS to the problem of lane finding
in GPS data. In this section, we report on the results
of these experiments. More details can be found in
Schroedl et al. (2001), which focuses specifically on
the problem of map refinement and lane finding.

As we will show, the unconstrained k-means algorithm
performs abysmally compared to COP-KMEANS,
which has access to additional domain knowledge
about the problem. Section 6.2 describes how we
transformed this domain knowledge into a useful set
of instance-level constraints.

6.1 Lane Finding Explained

Digital road maps currently exist that enable several
applications, such as generating personalized driving
directions. However, these maps contain only coarse
information about the location of a road. By refining
maps down to the lane level, we enable a host of more
sophisticated applications such as alerting a driver who
drifts from the current lane.

Our approach to this problem is based on the obser-
vation that drivers tend to drive within lane bound-
aries. Over time, lanes should correspond to “densely
traveled” regions (in contrast to the lane boundaries,
which should be “sparsely traveled”). Consequently,
we hypothesized that it would be possible to collect
data about the location of cars as they drive along a
given road and then cluster that data to automatically
determine where the individual lanes are located.

We collected data approximately once per second from
several drivers using GPS receivers affixed to the top
of the vehicle being driven. Each data point is repre-
sented by two features: its distance along the road
segment and its perpendicular offset from the road

centerline.6 For evaluation purposes, we asked the
drivers to indicate which lane they occupied and any
lane changes. This allowed us to label each data point
with its correct lane.

6.2 Background Knowledge as Constraints

For the problem of automatic lane detection, we fo-
cused on two domain-specific heuristics for generat-
ing constraints: trace contiguity and maximum sepa-
ration. These represent knowledge about the domain
that can be encoded as instance-level constraints.

Trace contiguity means that, in the absence of lane
changes, all of the points generated from the same ve-
hicle in a single pass over a road segment should end
up in the same lane.

Maximum separation refers to a limit on how far apart
two points can be (perpendicular to the centerline)
while still being in the same lane. If two points are
separated by at least four meters, then we generate
a constraint that will prevent those two points from
being placed in the same cluster.

To better analyze performance in this domain, we
modified the cluster center representation. The usual
way to compute the center of a cluster is to average
all of its constituent points. There are two significant
drawbacks of this representation. First, the center of
a lane is a point halfway along its extent, which com-
monly means that points inside the lane but at the far
ends of the road appear to be extremely far from the
cluster center. Second, applications that make use of
the clustering results need more than a single point to
define a lane.

Consequently, we instead represented each lane clus-
ter with a line segment parallel to the centerline. This
more accurately models what we conceptualize as “the
center of the lane”, provides a better basis for measur-
ing the distance from a point to its lane cluster cen-
ter, and provides useful output for other applications.
Both the basic k-means algorithm and COP-KMEANS
make use of this lane representation (for this problem).

6.3 Experiment 1: Comparison with K-means

Table 2 presents accuracy results7 for both algorithms
over 20 road segments. The number of data points for
each road segment is also indicated. These data sets

6The centerline parallels the road but is not necessarily
located in the middle of the road.

7These results represent overall accuracy rather than
held-out accuracy, since determining the right set of con-
straints is part of the problem (they are not artificially
generated from the true labels).



Table 2. Lane Finding Performance (Rand Index)

Segment K-means COP- Constraints
(size) KMEANS alone

1 (699) 49.8 100 36.8
2 (116) 47.2 100 31.5
3 (521) 56.5 100 44.2
4 (526) 49.4 100 47.1
5 (426) 50.2 100 29.6
6 (503) 75.0 100 56.3
7 (623) 73.5 100 57.8
8 (149) 74.7 100 53.6
9 (496) 58.6 100 46.8
10 (634) 50.2 100 63.4
11 (1160) 56.5 100 72.3
12 (427) 48.8 96.6 59.2
13 (587) 69.0 100 51.5
14 (678) 65.9 100 59.9
15 (400) 58.8 100 39.7
16 (115) 64.0 76.6 52.4
17 (383) 60.8 98.9 51.4
18 (786) 50.2 100 73.7
19 (880) 50.4 100 42.1
20 (570) 50.1 100 38.3
Average 58.0 98.6 50.4

are much larger than the UCI data sets, providing a
chance to test the algorithms’ scaling abilities.

In these experiments, the algorithms were required to
select the best value for the number of clusters, k. To
this end, we used a second measure that trades off
cluster cohesiveness against simplicity (i.e., number of
clusters).8 Note that this measure differs from the ob-
jective function used by k-means and COP-KMEANS
while clustering. In the language of Jain and Dubes
(1988), the former is a relative criterion, while the lat-
ter is an internal criterion.

In the lane finding domain, the problem of selecting k
is particularly challenging due to the large amount of
noise in the GPS data. Each algorithm performed 30
randomly-initialized trials with each value of k (from 1
to 5). COP-KMEANS selected the correct value for k
for all but one road segment, but k-means never chose
the correct value for k (even though it was using the
same method for selecting k).

As shown in Table 2, COP-KMEANS consistently
outperformed the unconstrained k-means algorithm,
attaining 100% accuracy for all but three data sets

8More precisely, it calculates the average squared
distance from each point to its assigned cluster cen-
ter and penalizes for the complexity of the solution:
Σi dist(di,di.cluster)

2

n
∗k2. The goal is to minimize this value.

and averaging 98.6% overall. The unconstrained ver-
sion performed much worse, averaging 58.0% accuracy.
The clusters the latter algorithm produces often span
multiple lanes and never cover the entire road segment
lengthwise. Lane clusters have a very specific shape:
they are greatly elongated and usually oriented hor-
izontally (with respect to the road centerline). Yet
even when the cluster center is a line rather than a
point, k-means seeks compact, usually spherical clus-
ters. Consequently, it does a very poor job of locating
the true lanes in the data.

For example, Figure 4 shows the output of the regular
k-means algorithm for data set 6.9 The horizontal axis
is the distance along the road (in meters) and the ver-
tical axis is the centerline offset. There are four true
lanes. The points for each of the four clusters found by
k-means are represented by different symbols. Clearly,
these lanes do not correspond to the true lanes.

Figure 4. K-means output for data set 6, k=4

The final column in Table 2 is a measure of how much
is known after generating the constraints and before
doing any clustering. It shows that an average accu-
racy of 50.4% can be achieved using the background
information alone. What this demonstrates is that
neither general similarity information (k-means clus-
tering) nor domain-specific information (constraints)
alone perform very well, but that combining the two
sources of information effectively (COP-KMEANS)
can produce excellent results.

An analysis of the errors made by COP-KMEANS on
the lane-finding data sets showed that each mistake
arose for a different reason. For data set 12, the algo-
rithm incorrectly included part of a trace from lane 4
in lane 3. This appears to have been caused by noise
in the GPS points in question: they are significantly

9The correct value of k was specified. Without it, the
algorithm selects k = 1.



closer to lane 3 than lane 4. On data set 16, COP-
KMEANS chose the wrong value for k (it decided on
three lanes rather than four). This road segment con-
tains very few traces, which possibly contributed to
the difficulty. Since COP-KMEANS made so few er-
rors on this data set, it is not possible to provide a
more general characterization of their causes.

It might be argued that k-means is simply a poor
choice of algorithm for this problem. However,
the marked improvements we observed with COP-
KMEANS suggest another advantage of this method:
algorithm choice may be of less importance when you
have access to constraints based on domain knowledge.
For this task, even a poorly-performing algorithm can
boost its performance to extremely high levels. In
essence, it appears that domain knowledge can make
performance less sensitive to which algorithm is cho-
sen.

6.4 Experiment 2: Comparison with agglom

Rogers et al. (1999) previously experimented with a
clustering approach that viewed lane finding as a one-
dimensional problem. Their algorithm (agglom) only
made use of the centerline offset of each point. They
used a hierarchical agglomerative clustering algorithm
that terminated when the two closest clusters were
more than a given distance apart (which represented
the maximum width of a lane).

This approach is quite effective when there are no lane
merges or splits across a segment, i.e., each lane con-
tinues horizontally from left to right with no inter-
ruptions. For the data sets listed in Table 2, their
algorithm obtains an average accuracy of 99.4%.10

However, all of these data sets were taken from a free-
way, where the number of lanes is constant over the
entirety of each road segment. In cases where there are
lane merges or splits, the one-dimensional approach is
inadequate because it cannot represent the extent of a
lane along the road segment. We are currently in the
process of obtaining data for a larger variety of roads,
including segments with lane merges and splits, which
we expect will illustrate this difference more clearly.

7. Related Work

A lot of work on certain varieties of constrained clus-
tering has been done in the statistical literature (Gor-
don, 1973; Ferligoj & Batagelj, 1983; Lefkovitch,
1980). In general, this work focuses exclusively on ag-

10A maximum merging distance of 2.5 meters was spec-
ified.

glomerative clustering algorithms and contiguity con-
straints (similar to the above trace contiguity con-
straint). In particular, no accommodation is provided
for constraints that dictate the separation of two items.
In addition, the contiguity relation is assumed to cover
all data items. This contrasts with our approach,
which can easily handle partial constraint relations
that only cover a subset of the instances.

In the machine learning literature, Thompson and
Langley (1991) performed experiments with provid-
ing an initial “priming” concept hierarchy to several
incremental unsupervised clustering systems. The al-
gorithms were then free to modify the hierarchy as
appropriate. In contrast to these soft constraints, our
approach focuses on hard, instance-level constraints.

Additionally, Talavera and Béjar incorporated domain
knowledge into an agglomerative algorithm, ISAAC
(Talavera & Bejar, 1999). It is difficult to classify
ISAAC’s constraints as uniformly hard or soft. The
final output is a partition (from some level of the hi-
erarchy), but the algorithm decides at which level of
the hierarchy each constraint will be satisfied. Conse-
quently, a given constraint may or may not be satisfied
by the output.

It is possible for the k-means algorithm to evolve
empty clusters in the course of its iterations. This
is undesirable, since it can produce a result with fewer
than k clusters. Bradley et al. (2000) developed a
method to ensure that this would never happen by
imposing a minimum size on each cluster. Effec-
tively, these act as cluster-level constraints. Like our
instance-level constraints, they can be used to incor-
porate domain knowledge about the problem. For ex-
ample, we know that road lanes must be separated
by some minimum distance. However, we have not
yet incorporated this type of constraint as an input
to the clustering algorithm; rather, we simply discard
solutions that contain lanes that are deemed too close
together. We are interested in exploring these cluster-
level constraints and integrating them more closely
with the clustering algorithm itself.

8. Conclusions and Future Directions

We have developed a general method for incorporat-
ing background knowledge in the form of instance-
level constraints into the k-means clustering algorithm.
In experiments with random constraints on six data
sets, we have shown significant improvements in accu-
racy. Interestingly, the results obtained with COP-
KMEANS are very similar to those obtained with
COP-COBWEB. In addition, we have demonstrated



how background information can be utilized in a real
domain, GPS lane finding, and reported on impressive
gains in accuracy.

We see several avenues for improvements and future
work. The use of constraints while clustering means
that, unlike the regular k-means algorithm, the assign-
ment of instances to clusters can be order-sensitive. If
a poor decision is made early on, the algorithm may
later encounter an instance di that has no possible
valid cluster (e.g., it has a cannot-link constraint to at
least one item in each of the k clusters). This occa-
sionally occurred in our experiments (for some of the
random data orderings). Ideally, the algorithm would
be able to backtrack, rearranging some of the instances
so that di could then be validly assigned to a cluster.

Additionally, we are interested in extending the con-
strained clustering approach to include hierarchical al-
gorithms. COP-KMEANS and COP-COBWEB both
generate a partition of the data and therefore are well-
situated to take advantage of hard, instance-level con-
straints. A different constraint formulation will be re-
quired for hierarchical algorithms.

Finally, we would like to explore an alternative to the
hard constraints presented here. Often domain knowl-
edge is heuristic rather than exact, and it is possi-
ble that it would be better expressed by a “soft” con-
straint.

Acknowledgements

We thank Pat Langley for his assistance and sugges-
tions and for access to the GPS data sets. We would
especially like to thank Westley Weimer for advice and
suggestions on the work as it progressed. We also
thank Marie desJardins for her insightful comments.

References

Bellot, P., & El-Beze, M. (1999). A clustering
method for information retrieval (Technical Report
IR-0199). Laboratoire d’Informatique d’Avignon,
France.

Bradley, P. S., Bennett, K. P., & Demiriz, A. (2000).
Constrained k-means clustering (Technical Report
MSR-TR-2000-65). Microsoft Research, Redmond,
WA.

Cardie, C. (1993). A case-based approach to knowl-
edge acquisition for domain-specific sentence analy-
sis. Proceedings of the Eleventh National Conference
on Artificial Intelligence (pp. 798–803). Washing-
ton, DC: AAAI Press / MIT Press.

Ferligoj, A., & Batagelj, V. (1983). Some types of clus-
tering with relational constraints. Psychometrika,
48, 541–552.

Fisher, D. (1987). Knowledge acquisition via incre-
mental conceptual clustering. Machine Learning, 2,
139–172.

Gordon, A. D. (1973). Classification in the presence
of constraints. Biometrics, 29, 821–827.

Jain, A. K., & Dubes, R. C. (1988). Algorithms for
clustering data. Prentice Hall.

Lefkovitch, L. P. (1980). Conditional clustering. Bio-
metrics, 36, 43–58.

MacQueen, J. B. (1967). Some methods for classifica-
tion and analysis of multivariate observations. Pro-
ceedings of the Fifth Symposium on Math, Statistics,
and Probability (pp. 281–297). Berkeley, CA: Uni-
versity of California Press.

Marroquin, J., & Girosi, F. (1993). Some extensions of
the k-means algorithm for image segmentation and
pattern recognitionAI Memo 1390). Massachusetts
Institute of Technology, Cambridge, MA.

Rand, W. M. (1971). Objective criteria for the evalua-
tion of clustering methods. Journal of the American
Statistical Association, 66, 846–850.

Rogers, S., Langley, P., & Wilson, C. (1999). Min-
ing GPS data to augment road models. Proceedings
of the Fifth International Conference on Knowledge
Discovery and Data Mining (pp. 104–113). San
Diego, CA: ACM Press.

Schroedl, S., Wagstaff, K., Rogers, S., Langley, P., &
Wilson, C. (2001). Mining GPS traces for map re-
finement. (in preparation).

Talavera, L., & Bejar, J. (1999). Integrating declara-
tive knowledge in hierarchical clustering tasks. Pro-
ceedings of the International Symposium on Intelli-
gent Data Analysis (pp. 211–222). Amsterdam, The
Netherlands: Springer-Verlag.

Thompson, K., & Langley, P. (1991). Concept forma-
tion in structured domains. In D. H. Fisher, M. J.
Pazzani and P. Langley (Eds.), Concept formation:
Knowledge and experience in unsupervised learning,
127–161. San Mateo, CA: Morgan Kaufmann.

Wagstaff, K., & Cardie, C. (2000). Clustering with
instance-level constraints. Proceedings of the Seven-
teenth International Conference on Machine Learn-
ing (pp. 1103–1110). Palo Alto, CA: Morgan Kauf-
mann.


