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Abstract. Modern classification and clustering techniques analyze col-
lections of objects that are described by a set of useful features or pa-
rameters. Clustering methods group the objects in that feature space to
identify distinct, well separated subsets of the data set. However, real ob-
servational data may contain missing values for some features. A “shape”
feature may not be well defined for objects close to the detection limit,
and objects of extreme color may be unobservable at some wavelengths.

The usual methods for handling data with missing values, such as
imputation (estimating the missing values) or marginalization (deleting
all objects with missing values), rely on the assumption that missing val-
ues occur by random chance. While this is a reasonable assumption in
other disciplines, the fact that a value is missing in an astronomical cata-
log may be physically meaningful. We demonstrate a clustering analysis
algorithm, KSC, that a) uses all observed values and b) does not discard
the partially observed objects. KSC uses soft constraints defined by the
fully observed objects to assist in the grouping of objects with missing
values. We present an analysis of objects taken from the Sloan Digital
Sky Survey to demonstrate how imputing the values can be misleading
and why the KSC approach can produce more appropriate results.

1. Introduction

Clustering is a powerful machine learning tool that divides a set of objects into
a number of distinct groups based on a problem-independent criterion, such as
maximum likelihood (the EM algorithm) or minimum variance (the k-means
algorithm). In astronomy, clustering has been used to analyze both images
(POSS-II, Yoo et al., 1996) and spectra (IRAS, Goebel et al., 1989). Notably,
the Autoclass algorithm identified a new subclass of stars based on the clustering
results (Goebel et al., 1989).

However, most clustering algorithms require that all objects be fully ob-
served: objects with missing values for one or more features cannot be clustered.
This is particularly problematic when analyzing astronomical data sets, which
often contain missing values due to incomplete observations or varying survey
depths. Missing values are commonly handled via imputation, where the gap
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is “filled in” with an inferred value. While appropriate for some domains, this
approach is not well suited to astronomical data sets, because a missing value
may well be physically meaningful. For example, the Lyman break technique
(Giavalisco, 2002) can identify high-redshift galaxies based on the absence of de-
tectable emissions in bands corresponding to the FUV rest frame of the objects.
In such cases, imputing missing values is misleading and can skew subsequent
analyses of the data set.

We propose the use of a clustering approach that avoids imputation and
instead fully leverages all existing observations. In this paper, we discuss our
formulation of the missing data problem and expand on the KSC algorithm
originally presented by Wagstaff (2004). We compare KSC analytically and em-
pirically to other methods for dealing with missing values. As a demonstration,
we analyze data from the Sloan Digital Sky Survey, which contains missing val-
ues. We find that KSC can significantly outperform data imputation methods,
without producing possibly misleading “fill” values in the data.

2. Clustering Astronomical Objects with Missing Values

Missing values occur for a variety of reasons, from recording problems to in-
strument limitations to unfavorable observing conditions. In particular, when
data is combined from multiple archives or instruments, it is virtually certain
that some objects will not be present in all of the contributing sources. Little &
Rubin (1987) identified three models for missing data. When values are Missing
At Random (MAR, MCAR), imputation may be a reasonable approach since
the values may be inferable from the observed values. The third type of missing
values are Not Missing at Random (NMAR): when the value itself determines
whether it is missing. This is precisely the case when objects fall below a de-
tector’s sensitivity threshold. There is no way to impute these values reliably,
because they are never observed.

2.1. Common Methods for Dealing with Missing Values

There are three major approaches to handling missing values when clustering.
The first, marginalization, simply removes either all features or all objects that
contain missing values. The second method, imputation, attempts to “fill in”
any missing values by inferring new values for them. The advantages and draw-
backs of two marginalization and three imputation techniques are summarized
in Table 1. Finally, some recent methods (Browse et al., 2003; this paper) avoid
both of these approaches and instead seek to incorporate all observed values (no
marginalization) without inferring the missing ones (no imputation).

2.2. Our Approach: Constrained Clustering

In our approach, we divide the data features into two categories. We use the fully
observed features for clustering, and we use the partially observed features (with
missing values) to generate a set of constraints on the clustering algorithm. We
have previously shown that constraints can effectively enable clustering methods
to conform to supplemental knowledge about a data set (Wagstaff et al., 2001).
We use the KSC (“K-means with Soft Constraints”) clustering algorithm, pro-
posed by Wagstaff (2004), to incorporate information from the partially observed
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Table 1.  Comparison of marginalization and imputation methods.
| Technique | Advantages | Drawbacks
Feature Marginalization: Simple Lose information
Omit features with missing values about all objects
Object Marginalization: Simple Lose objects
Omit objects with missing values
Mean Imputation: Simple Likely to be inaccu-

Replace each missing value with
data set mean

rate; mean value may
never truly occur

Probabilistic Imputation:
Replace with random value ac-
cording to data set distribution of
values

Inferred values are
Hrea’l”
(actual observations)

Inferred values may
have no connection
to the objects

Nearest Neighbor Imputation:
Replace with value(s) from the
nearest neighbor

Inferred values are
“best possible guess”

Inferred values may
still be inappropriate
(unobservable)

features as a source of information that supplements the fully observed features.
Before discussing our experimental results, we will describe what we mean by
constraints and briefly outline the KSC algorithm.

A soft constraint between two objects indicates a preference for, or against,
their assignment to the same cluster. We represent a soft constraint between
objects o; and o; as a triple: (0;,0;,5). The strength, s, defines the nature
and confidence of the constraint. A positive value for s indicates a preference
towards clustering o; and o; together; a negative value suggests that they should
be assigned to different clusters.

The KSC algorithm is based on the basic k-means algorithm first proposed
by MacQueen (1967). While the k-means algorithm seeks to minimize the total
variance, V', of a proposed partition P, KSC minimizes the combination of the
variance and a penalty, C'V, for constraint violations:

v(P),  CV(P)
Vmax CVmax

The CV penalty is calculated as the sum of the squared strengths, s, of all con-
straints violated by the partition P. The quantities V and C'V are normalized
by their maximum possible values. The user-specified weight parameter w in-
dicates the relative importance of variance versus constraint violations; a good
value can be chosen based on performance on a small labeled subset of the data.

f(P)=(1~-w)

(1)

3. Experimental Results

The Sloan Digital Sky Survey (SDSS) contains observations of 141 million galax-
ies, quasars, and stars (as of data release 3), many with missing values. We
selected a small subset of this data for our experiments. The features we used
were brightness (psfCounts), texture, size (petroRad), and shape (M_el and
M_e2). 42 of the 1507 objects we analyzed have missing shape features. We
clustered this data set based on the three fully observed features and gener-
ated constraints based on all of the features. That is, for each pair of ob-
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Figure 1.  Empirical comparison of imputation, marginalization, and KSC
methods. Figure (a) shows agreement with true star/galaxy separation; figure
(b) shows the impact (changes in cluster assignment) for the fully observed
objects. The dashed line shows the agreement expected by random chance.

jects 01,09 that had observed shape features, we generated a constraint with
strength s = />_,(fi(01) — fi(02))2. The result was 1,072,380 constraints that
were “mined” from the data set.

3.1. Separating Stars and Galaxies

In our experiments, we calculated the agreement between the partition created
by each method and the “true” star/galaxy classification (based on SDSS la-
bels), using the Adjusted Rand Index (ARI), which was proposed by Hubert
and Arabie (1985). An ARI of 0 indicates the amount of agreement expected
by randomly assigning the same number of items to the specified number of
clusters, with the same number of items per cluster.

Figure 1(a) shows performance results for partitions that contain two to
eight clusters. All three imputation methods negatively impact performance,
producing results that are actually worse than that expected by random chance.
We observe that when the shape features are completely ignored (marginal-
ization), agreement steadily increases as the number of clusters goes up; the
clustering method is able to assign unusual objects to their own clusters and
more accurately separate stars and galaxies in the rest. Including the observed
shape information as constraints is competitive with, and sometimes superior
to, marginalization. We expect that if shape information were more relevant for
separating stars from galaxies, then higher agreement would be observed.

3.2. Impact on Fully Observed Objects

In Figure 1(b), we assess the clustering impact on the fully observed objects
in the data set. Since only 42 of the 1507 objects have missing values, their
inclusion should result in little change in the cluster assignments for the fully
observed objects. We find that this is true for marginalization and for KSC
(agreement for the fully observed objects stays high), but again the imputation
methods do not perform well. Imputing the missing values seems to significantly
impact the placement of other objects in the data set.
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4. Conclusions

In this paper, we have demonstrated that the imputation methods commonly
used to cluster objects when some feature values are missing can be particularly
misleading when applied to astronomical data. Our empirical results with SDSS
data show that imputation methods prevent the correct separation of stars and
galaxies, while KSC with constraints generated from the fully observed objects
performs much better (up to 90% improvement). In addition, KSC minimizes
the impact on cluster assignments for the fully observed objects.

When there are a only a few observed values for a given feature, imputation
methods are even less reliable because they have too little information from
which to infer the missing values. This is exactly the case where KSC is most
efficient, and effective, since the runtime require to generate and enforce all of
the constraints is proportional to the number of fully observed objects. We plan
to explore this further in future experiments.
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