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Abstract. This work focuses on the active selection of pairwise con-
straints for spectral clustering. We develop and analyze a technique for
Active Constrained Clustering by Examining Spectral eigenvectorS (AC-
CESS) derived from a similarity matrix. The ACCESS method uses an
analysis based on the theoretical properties of spectral decomposition
to identify data items that are likely to be located on the boundaries
of clusters, and for which providing constraints can resolve ambiguity
in the cluster descriptions. Empirical results on three synthetic and five
real data sets show that ACCESS significantly outperforms constrained
spectral clustering using randomly selected constraints.

1 Introduction

Recently, clustering research has focused on developing methods to incorporate
domain knowledge into clustering algorithms, so that the results are tailored
to the interests and existing knowledge of the user. For example, pairwise con-
straints were introduced by Wagstaff et al. [1] as a way to use domain-specific
information in the form of must-link constraints, which specify that two in-
stances must be in the same cluster, and cannot-link constraints, which indicate
that two instances must be in different clusters. Although it has been repeatedly
demonstrated that constraints can improve clustering performance [1–4], these
gains often require the user to specify constraints for a significant fraction of
the items in the data set. In this paper, we seek to reduce that user burden by
actively selecting item pairs for constraint labelling, so that the most informative
constraints are acquired as quickly as possible.

Active constraint selection has been previously studied by Basu et al. for
the K-means algorithm [5]. Their method aims to find k neighborhoods to ini-
tialize the clusters. However, for data sets that have close boundaries or small
overlap areas on the boundaries, which are the focus of this paper, this method
does not work well. We instead propose an active constraint selection method
that identifies crucial boundary points (those near cluster boundaries) with high
probability.



The main contribution of this paper is an active constraint selection technique
for data sets with close or overlapping boundaries. We refer to this method as
Active Constrained Clustering by Examining Spectral eigenvectorS (ACCESS).
ACCESS uses a heuristic derived from the theoretical properties of spectral
decomposition methods to identify points at or near cluster boundaries with high
probability. Providing the clustering algorithm with constraints on such points
can help to resolve ambiguity in the cluster descriptions. Our experiments on
three synthetic and five real data sets show that ACCESS yields a significant
performance improvement over constrained clustering with randomly selected
constraints.

2 Background

Spectral clustering. The eigenvectors derived from the data similarity graph have
good properties and can be used for clustering; this class of methods is referred
to as spectral clustering techniques. Given n data points, we can construct a
graph G = (V,E,A), where each vertex vi corresponds to a point pi, and the
edge ei,j between vertices i and j is weighted by their (dis)similarity value, ai,j .
Any similarity measure can be used; one popular similarity metric is defined as

Ai,j = exp(
−δ2

ij

2σ2
), (1)

where δij is the Euclidean distance between point i and j and σ is a free scale
parameter. Using this definition, the larger the distance δij , the smaller the
similarity Aij .

The goal of spectral clustering is to find a minimal cut of the graph such
that the inter-cluster similarities are minimized. However, this objective favors
cutting off a small number of isolated points [6]. Previous research explored
refined objectives to overcome this drawback, including the ratio cut [6] and
normalized cut [7] criteria. It can be shown that the second smallest eigenvector
of the (generalized) graph Laplacian matrix, defined as L = D − A, where D
is a diagonal matrix with element dii =

∑n

j=1
Aij , is an approximation of the

cluster membership indicator vector and its corresponding eigenvalue gives the
optimal cut value [6, 7]. The second smallest eigenvector is used to split the data
into two groups.

Recently, researchers have proposed to make use of k eigenvectors simultane-
ously for the multi-cluster problem [8, 9]. These methods usually use a normalized
similarity graph, such as

P = D−1A (2)

or
N = D−

1

2 AD−

1

2 . (3)

Note that the eigenvectors derived from the P and N matrices are related to the
eigenvectors derived from the (generalized) Laplacian matrix. In particular, if λ
and x are the solutions of Equation 2, then 1 − λ and x are the solutions of the



generalized Laplacian matrix [9]. After obtaining k eigenvectors, any clustering
technique, such as the K-means algorithm, can be applied to the eigenspace, that
is, the space spanned by the largest k eigenvectors. The justification of clustering
in the eigenspace can be found in Ng et al. [8] and Meila et al. [9].

Each row in the P matrix sums to 1. Therefore, we can interpret the entries
Pij as the transition probabilities of a random walker moving from point i to
point j. The probabilistic interpretation of the normalized similarity matrix gives
an intuitive explanation of the constraints, as we will discuss next.

Incorporating constraints in spectral clustering. Kamvar et al. developed a tech-
nique to incorporate constraints into spectral clustering [10]. We will refer to
their method as KKM after the authors’ initials. Their work uses a different
normalization matrix, as follows:

N = (A + dmaxI − D)/dmax, (4)

where dmax is the largest element in the matrix D and I is the identity matrix.
Note that the off-diagonal entries of N are simply the scaled similarity values:
Nij = Aij/dmax for i 6= j. The diagonal entries, however, are computed by
Nii = (dmax − dii)/dmax.

Given a must-link constraint (i, j), KKM modifies the corresponding affinities
so that Aij = Aji = 1; as a result, when N is re-derived from the new similarity
matrix, the transition probability between i and j will be greater than or equal
to the transition probabilities leading from i or j to any other point. Similarly, a
cannot-link constraint (i, j) is incorporated by setting Aij = Aji = 0, preventing
a direct transition between points i and j.

Note that the use of the transition probability matrix in Equation 4 may
cause problems when there are outliers in the data. For example, if point i is
isolated from all other data points, then Nii will be much larger than all other
entries Nij . Therefore, once a random walk encounters point i, it has a very
low probability of leaving it, resulting in a singleton cluster. To overcome this
drawback, our method replaces KKM’s transition matrix N with the P matrix
in Equation 2. We discuss the advantages of using this matrix in Section 5.

Notation. In this paper, we focus on the two-cluster problem, and assume that
there are only two clusters, C1 and C2. We index the points so that the points
in the first cluster appear before the points in the second cluster. We write the
similarity matrix A = (AC1C1

, AC1C2
;AC2C1

, AC2C2
), where AC1C1

and AC2C2

are the intra-cluster similarity sub-matrices, and AC1C2
= AT

C2C1
are the inter-

cluster similarity sub-matrices.

3 Active Constraint Selection

We are interested in clustering problems where the clusters are nearly separated
– by which we mean that the boundaries of the clusters are very close, and there
may be small overlapping areas. We propose to first analyze the eigenvectors



derived from the data similarity matrix to identify sparse points and boundary
points. Then we will query an oracle to give us correct pairwise constraints on
these ambiguous points. Incorporating these constraints into spectral clustering
improves performance.

Properties of eigenvectors. Our active constraint selection method is based on
the following properties of the eigenvectors. Interested readers are referred to
the citations for proofs of the theoretical results that we use here.

1. In the ideal case, if the k clusters are well separated, so that only the intra-
cluster similarity sub-matrices have nonzero entries, we will obtain k piece-

wise constant eigenvectors—in other words, items from the same cluster will
have the same values in the eigenvector, and the clusters can be easily rec-
ognized [11, 12].

2. If the clusters are nearly separated (i.e., the dense clusters are loosely con-
nected by a few bridges (edges) between them), then the first k eigenvectors
will be approximately piecewise constant. This claim has previously been
shown by applying matrix perturbation theory to the ideal case [13]. The
values in the eigenvectors of points adjacent to these bridges will be pulled
towards each other.

3. If the graph is connected, then the identity vector 1 is the smallest eigen-
vector of the Laplacian matrix, and the corresponding eigenvalue is 0. All
other eigenvectors are orthogonal to 1, which implies that there are both
positive and negative (and possibly zero) values in each eigenvector. This
can be easily shown by the definition of the Laplacian matrix. This fact mo-
tivates a simple heuristic to partition the data: items with positive values in
the eigenvector can be put into one cluster, and items with negative values
in the eigenvector can be put into the other cluster [11].

4. It has been proved [6] that the second smallest eigenvector of the Lapla-
cian matrix gives the optimal ratio cut cost for splitting the data set into
two groups. By inference, the third smallest eigenvector gives the optimal
ratio cut cost for further splitting the first two groups. A similar result has
been derived for the generalized eigenvectors of the Laplacian matrix for the
normalized cut criterion[7]. In summary, the sorted eigenvalues indicate the
estimate of cut cost in order, and the different eigenvectors correspond to
different splitting strategies.

Close and distant boundary points. For the scenario we are interested in, the
items located on the cluster boundaries are the objectives of our active constraint
selection, since they are far from the cluster centers and may be interspersed with
boundary points of the other clusters. If we can impose constraints to strengthen
the similarity between boundary points and members of their clusters, while
weakening their similarity to points from other clusters, the clusters themselves
will be more clearly apparent in the similarity matrix. We distinguish boundaries
between clusters from the outer boundaries of clusters by calling the former close

boundaries, and the latter distant boundaries. Our method aims to find both
types.
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(a)The 2nd largest eigenvector. (b)Close boundary points. (c)Distant boundary points.

Fig. 1. An illustration of the active constraint selection.

According to statement 2 above, for the data sets we are interested in, the
eigenvector will be approximately piecewise constant. In this case, the values in
the eigenvector will be bimodally distributed and centered on v and −w (where
v and w are positive numbers), with some variances. The close boundary points,
i.e., items adjacent to the bridges, are likely to have eigenvector values towards
the opposite center. In addition, we hypothesize that the items with eigenvector
values far from 0 will be on the distant boundaries (see Figure 1).

Figure 1(a) shows the sorted second largest eigenvector of two Gaussian dis-
tributed clusters (represented by + and ·) and the close and distant boundary
points identified from this eigenvector (represented by o). The 10 points with
eigenvector values closest to 0 are shown in Figure 1(b); they indeed appear to be
located on the close boundaries. In Figure 1(c), the points with largest positive
(negative) values have been identified as distant boundary points.

Since we only consider clustering problems with two clusters, we expect that
the largest two eigenvectors of the P matrix will be most useful for splitting the
data. However, whether or not these eigenvectors are appropriate for this purpose
depends on the true data distribution and on the value of the σ parameter, as
we show next.

Sparse Points. Figure 2 shows the Ellipses data set. It has two important char-
acteristics: (1) the two clusters have very close boundaries and there is a small
group of overlapped items; and (2) there are two small groups of ‘+’ data—the
three circled items located at the bottom left corner and one located at the top
right corner in Figure 2—that are far away from the main group of ‘+’ data. We
call these sparse points, and we now examine their effects on the eigenvectors.

The distance from these sparse points to the center of the cluster to which
they belong is larger than the distance between the boundaries of two clusters.
Therefore, for small values of σ, it is possible that the largest eigenvectors will
treat these small groups of ‘+’ data items as a separate cluster. This is exactly
what we see using the similarity matrix with σ = 0.2. Figure 3(a) shows the
second largest eigenvector of the Ellipses data set. The anomalous points are
exactly those sparse points in Figure 2. Fortunately, the third largest eigenvector
(Figure 3(b)) roughly corresponds to the groupings for the remaining data. From



Figure 3(b) we can see that most of the data in the first cluster (indexed from 1
to 80) have positive values, while most data in the second cluster have negative
values. Several items violate this structure. These items have either values near
zero or large negative values, and therefore can be identified by our method.
We can interpret the eigenvectors as follows: the first eigenvector gives cut 1 in
Figure 2, the second eigenvector gives cut 2, and the third eigenvector gives cut
3. The third largest eigenvector will be automatically selected by ACCESS to
identify the close and distant boundary points.

Fig. 2. Ellipses data set.
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(a)The 2nd largest eigenvector. (b)The 3rd largest eigenvector.

Fig. 3. The eigenvectors of Ellipses data set.

In summary, for two-cluster problems, our active constraint selection method
will identify two types of informative points: (1) the sparse points, identified by
the first m eigenvectors (where m depends on how many sparse subclusters are



found in the data set), and (2) the close and distant boundary points identified
by the (m+1)st eigenvector. These m+1 eigenvectors are used to construct the
eigenspace matrix in step 7 of the ACCESS algorithm, given below. In the next
section, we explain how we identify these points.

Implementation of active constraint selection. Active constraint selection starts
with the largest eigenvector. Each eigenvector may produce one of two outcomes.
If it identifies one or more sparse points (defined as points whose deviation from
the mean value in the eigenvector are greater than three standard deviations),
then the next eigenvector will be further examined. Alternatively, if it does not
identify any sparse points, then we use this (m+1)st eigenvector to identify the
close and distant boundary points, and we ignore the remaining eigenvectors.

The close and distant boundary points are identified as follows. Each data
point has an associated pclose-value and pdistant-value when considered as a
close or distant boundary point, respectively. The pclose-value is inversely pro-
portional to its distance from 0, while the pdistant-value is proportional to its
distance from 0. The detailed computation is as follows (ε is a small constant):

1: for the (m + 1)st eigenvector e
2: maxpos = max{ei | ei >= 0}
3: maxneg = max{abs(ei) | ei < 0}
4: for ei do

5: if ei >= 0 then

6: pi
close = (maxpos − ei + ε)/(maxpos + ε)

7: pi
distant = (ei + ε)/(maxpos + ε)

8: else

9: pi
close = (maxneg − abs(ei) + ε/(maxneg + ε))

10: pi
distant = (abs(ei) + ε)/(maxneg + ε)

11: end if

12: end for

Our method chooses sets of boundary points Sclose and Sdistant such that
following condition is satisfied: {pi

close >= pj
close,∀i, j, i ∈ Sclose, j /∈ Sclose}

and {pi
distant >= pj

distant,∀i, j, i ∈ Sdistant, j /∈ Sdistant}. Given q, the number
of points to query, ACCESS selects s sparse points, 2(q − s)/3 close boundary
points and (q − s)/3 distant boundary points.

Algorithm. The pseudo-code for the ACCESS algorithm is given in Figure 4.
There are two parameters: q, the number of items to query, and σ, the scale
parameter in Equation 1. Note that our main contribution is in step 3, active
constraint selection.

4 Experiments and Results

Data sets. We implemented experiments on three synthetic and five real data
sets. The Sphere data set is generated by Gaussian distributions with mean (0, 0)



1: Derive matrix A and matrix P = D−1A.
2: Compute the eigenvalues and eigenvectors of P .
3: Actively pick q data points by examining the eigenvectors and query the oracle for

labels or pairwise constraints.
4: Impose must-link constraint pairs (i, j) by assigning Aij = Aji = 1.
5: Impose cannot-link constraint pairs (i, j) by assigning Aij = Aji = 0.
6: Reconstruct matrix P ′.
7: Identify the largest m′ eigenvectors that have sparse points.
8: Pick the largest m′ + 1 largest eigenvectors of P ′, and construct the eigenspace

matrix X = (x1, x2, · · · , xm′
+1).

9: Row normalize X to length 1.
10: Perform K-means clustering on the rows of X to identify two clusters.
11: Assign data point i to cluster c if row Xi. is assigned to cluster c.

Fig. 4. The ACCESS algorithm.

and (3, 0), and covariance matrix (1, 0; 0, 1). The Ellipses and Test data sets are
shown in Figure 2 and Figure 5. The Iris and Soybean data sets are from the UCI
Machine Learning Repository [14]. For these data sets, we derive the similarity
matrix from the Euclidean distances as in Equation 1. The text data sets are
from the 20 Newsgroups collection. We preprocess the data as described by Basu
et al. [5], then use cosine similarity values. Let NN20(p) be the set of 20 nearest
neighbors to point p. We set Ai,j of the similarity matrix to zero if pi /∈ NN20(j)
and pj /∈ NN20(i). The value 20 was selected based on the method reported by
Kamvar et al. [10]. Key properties of each data set are shown in Table 1.
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Fig. 5. Tester data set.

Table 1. Real data sets.

data cluster 1 cluster 2 num

Iris Versicolour Virginica 100
Soybean brown-spot frog-eye-leaf-spot 183
Text1 alt.atheism rec.sport.baseball 200
Text2 alt.atheism sci.space 200
Text3 rec.sport.baseball sci.space 200



Parameter selection. The σ parameter in Equation 1 significantly affects clus-
tering performance. Ng et al. [8] proposed a parameter selection criterion based
on the observation that a good σ parameter will yield a partition with small dis-
tortion (i.e., small mean squared error). In our implementation, we use a small σ
value, since this yields a sparse similarity matrix, which tends to produce good
spectral clustering results. In addition, we automatically identify eigenvectors
that will isolate small groups of data (Figure 3(b)) and use m + 1 eigenvectors
for clustering.

Evaluation. The Rand index [15] is often used as an evaluation of the clustering
result. The Rand index measures the agreement of two partitions, P1 and P2.
Given a data set with n points, there are n(n − 1)/2 pairs of decisions: for each
pair of items, each partition either assigns them to the same cluster or to different
clusters. Let a and b be the number of pairs for which the two partitions agree
by assigning them to the same cluster or to different clusters, respectively. The
Rand index (RI) is then defined as:

RI(P1, P2) =
a + b

n(n − 1)/2
. (5)

In other words, the RI computes the percentage of agreements among all pairs
of decisions.

One problem with the Rand index is that its expected value for two ran-
dom partitions is not a constant. The adjusted Rand index (ARI) [16] has been
proposed to overcome this shortcoming. The expected value for two random par-
titions with a fixed number of clusters for each partition and a fixed number of
instances for each cluster is zero. Let nij be the number of items that appear
in cluster i in P1 and in cluster j in P2. ARI is computed as:

ARI(P1, P2) =
R − E[R]

M [R] − E[R]
, R =

∑

ij

(

nij

2

)

(6)

where E[R] =

[

∑

i

(

ni.

2

)

∑

j

(

n.j

2

)]

/

(

n
2

)

is the expected value of R and

M [R] = 1

2

[

∑

i

(

ni.

2

)

+
∑

j

(

n.j

2

)]

is the maximum possible value for R. Note

that, the ARI is usually smaller than the RI. We use the ARI for evaluating the
expect of our clustering result with the a priori assigned class labels.

Results and analysis. The baseline for our experiments is constrained clustering
with randomly selected constraints. The items are randomly selected, and con-
straints for each pair of selected items are derived from their true class labels.
We compute the transitive closure of the must-link and cannot-link constraints
as in Wagstaff et al. [1]. Results are averaged over 100 runs. In the results shown
in Figures 6(a) to 6(h), the x axis is the number of items selected, and the y axis
is the adjusted Rand index. Note that the only difference between the baseline
and our method is which items are selected for querying.
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(a) Ellipses (σ = 0.2). (b) Spheres (σ = 0.5).
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(c) Tester (σ = 0.2). (d) Iris (σ = 0.2).
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(e) Soybean (σ = 0.5). (f) Text1.
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Fig. 6. Performance plots.



ACCESS yields better performance, with fewer queries, than randomly se-
lecting constraints, on all data sets except Soybean (for which the performance of
ACCESS and random selection is approximately equal). To further understand
why our method selects good constraints, we examine the similarity matrix for
the Text2 data set, before (Figure 7 (a)) and after (Figure 7 (b)) imposing con-
straints derived from 50 actively selected items (636 must-link and 589 cannot-
link constraints). Rows and columns correspond to the item indices. A dot at
position (i, j) means that the similarity value Ai,j is positive. We first obtain
the second largest eigenvector of the similarity matrix (before imposing any
constraints), and then sort the matrix according to the ascending order of this
eigenvector. Both plots have the same item ordering. From Figure 7 (a), we can
see that the items at the cluster boundaries (i.e., at the intersection of the two
diagonal blocks) are mixed together. After imposing the constraints, they are
more clearly distinguished (Figure 7 (b)).

We also did comparative experiments when imposing only must-link or only
cannot-link constraints. The results show that the must-link constraints improve
clustering performance more than the cannot-link constraints. For some of the
data sets (Figure 6(g)), imposing only must-link constraints achieves the same
performance as imposing both types of constraints. In Figure 6(g), the curve
labeled ’ACCESS-M’ shows the result of imposing only actively selected must-
link constraints, while the ’ACCESS-C’ curve illustrates the result of imposing
only actively selected cannot-link constraints.

Figure 6(e) shows a case where our method is less effective. Further examining
the Soybean data set, there are large overlapping areas between the two clusters.
In this case, our method performs comparably to randomly selected constraints.
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Fig. 7. The similarity matrix of the Text2 data set before and after imposing con-
straints.



Fig. 8. The sixth largest eigenvector of the Ellipses data set derived using the N matrix
in Equation 4.
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5 Discussion and Related Work

There are two primary reasons that we used the P matrix given in Equation 2,
rather than the N matrix used by KKM in Equation 4. First, we have previ-
ously showed that using randomly selected constraints, the KKM method some-
times performs worse (and was not seen to perform better) than the P -based
method [17]. Second, and more importantly, due to the disadvantages discussed
in Section 2, the eigenvectors derived from the N matrix fail to identify close and
distant boundary points. Because of the complicated distribution of clusters, the
N matrix often yields eigenvectors in which several sparse points have extremely
large values, while all other points have values near 0. For example, for the N
matrix of the Ellipses data set, ACCESS identifies sparse points in the first five
eigenvectors. The sixth eigenvector is plotted in Figure 8. However, even for this
eigenvector, our method for identifying sparse points returns new points. As a
result, it is difficult to use the N matrix to identify the boundary points in the
data set.

Recently, there has been some work on active constrained clustering in gen-
eral. Basu et al. implemented an active constraint selection for their Pairwise
Constrained K-means algorithm [5]. Their method has two phases. The first
phase, Explore, selects an k-neighborhood of must-linked points using the k-
centers heuristic. This k-neighborhood is used to initialize the cluster centroids.
When queries are allowed, the Consolidate phase is invoked to randomly select
a point and query the user about its relation to the known neighborhoods until
a must-link is obtained. The authors proved that at least one point can be ob-
tained for each cluster in at most k

(

k
2

)

queries. It implies that 2-neighborhoods
can be obtained after querying four items using their method. After that, the au-
thors suggest invoking the Consolidate phase as early as possible, to randomly
select items for querying, because the randomly selected samples capture the
underlying data distribution and can produce a better estimate of centroids.
Their method is tailored to the K-means algorithm, and the purpose of active
selection is to get a good estimate of the cluster centroids. When applying their



method to spectral clustering with a large number of selected items (>4 items
for 2-cluster problems), the performance should be similar to that of randomly
selected items because of the Consolidate phase. An empirical comparison of
ACCESS and PCK-means is described in another paper [18].

Klein et al. developed a cluster-level active querying technique for hierarchi-
cal clustering, which works on data sets that exhibit local proximity structure –
locally a point has the same cluster membership as its closest neighbors, while
globally, a subcluster has different cluster memberships from its closest neigh-
boring subclusters [2]. These active techniques do not work well in our scenario,
where the boundaries are very close. In contrast, our method can identify the
points close to the boundaries of clusters.

6 Conclusions and Future Work

In this paper, we described ACCESS, an active constrained spectral cluster-
ing method. The actively selected constraints significantly improve clustering
performance over randomly selected constraints for data sets that have close
boundaries and overlapping regions.

The constraints selected by our method are located on the boundaries of
the clusters. It is likely that they could also improve the performance of other
clustering methods such as K-means and hierarchical clustering. We are working
on applying these constraints to these clustering methods and comparing the
performances of different active selection methods.

Our current method focuses on two-cluster problems. We believe that the
same idea can be generalized to multiple-cluster problems as well, by identifying
the boundary points of one cluster and splitting these points, then recursively
splitting the remaining data items.
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