
Fabric: A Platform for Secure Distributed
Computation and Storage

Jed Liu Michael D. George K. Vikram
Xin Qi Lucas Waye Andrew C. Myers

{liujed,mdgeorge,kvikram,qixin,lrw,andru}@cs.cornell.edu
Department of Computer Science

Cornell University
4130 Upson Hall, Ithaca NY

Abstract
Fabric is a new system and language for building secure distributed
information systems. It is a decentralized system that allows hetero-
geneous network nodes to securely share both information and com-
putation resources despite mutual distrust. Its high-level program-
ming language makes distribution and persistence largely transpar-
ent to programmers. Fabric supports data-shipping and function-
shipping styles of computation: both computation and information
can move between nodes to meet security requirements or to im-
prove performance. Fabric provides a rich, Java-like object model,
but data resources are labeled with confidentiality and integrity poli-
cies that are enforced through a combination of compile-time and
run-time mechanisms. Optimistic, nested transactions ensure con-
sistency across all objects and nodes. A peer-to-peer dissemination
layer helps to increase availability and to balance load. Results from
applications built using Fabric suggest that Fabric has a clean, con-
cise programming model, offers good performance, and enforces
security.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifications—Con-
current, distributed, and parallel languages; D.4.6 [Operating Sys-
tems]: Security and Protection—information flow controls; D.4.7
[Operating Systems]: Organization and Design—distributed sys-
tems

General Terms
Security, Languages

1. Introduction
We rely on complex, distributed information systems for many

important activities. Government agencies, banks, hospitals, schools,
and many other enterprises use distributed information systems to
manage information and interact with the public. Current practice

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’09, October 11–14, 2009, Big Sky, Montana, USA.
Copyright 2009 ACM 978-1-60558-752-3/09/10 ...$10.00.

does not offer general, principled techniques for implementing the
functionality of these systems while also satisfying their security
and privacy requirements. This lack motivates the creation of Fab-
ric, a platform for building secure distributed information systems.

It is particularly difficult to build secure federated systems, which
integrate information and computation from independent adminis-
trative domains—each domain has policies for security and privacy,
but does not fully trust other domains to enforce them. Integrating
information from different domains is important because it enables
new services and capabilities.

To illustrate the challenges, consider the scenario of two medical
institutions that want to securely and quickly share patient infor-
mation. This goal is important: according to a 1999 Institute of
Medicine study, at least 44,000 deaths annually result from medical
errors, with incomplete patient information identified as a leading
cause [25]. However, automated sharing of patient data poses diffi-
culties. First, the security and privacy policies of the two institutions
must be satisfied (as mandated by HIPAA [22] in the U.S.), restrict-
ing which information can be shared or modified by the two institu-
tions. Second, a patient record may be updated by both institutions
as treatment progresses, yet the record should be consistent and up
to date when viewed from the two institutions. It is inadequate to
simply transmit a copy of the record in a common format such as
XML, because the copy and the original are likely to diverge over
time. Instead, both institutions should have easy, secure, consistent,
and efficient access to what is logically a single patient record.

Scenarios like this one inspire the development of Fabric, a feder-
ated system that supports secure, shared access to information and
computation, despite distrust between cooperating entities. The goal
of Fabric is to make secure distributed applications much easier to
develop, and to enable the secure integration of information systems
controlled by different organizations.

To achieve this goal, Fabric provides a shared computational and
storage substrate implemented by an essentially unbounded num-
ber of Internet hosts. As with the Web, there is no notion of an
“instance” of Fabric. Two previously noninteracting sets of Fabric
nodes can interact and share information without prior arrangement.
There is no centralized control over admission: new nodes, even un-
trustworthy nodes, can join the system freely.

Untrustworthy nodes pose a challenge for security. The guiding
principle for security in Fabric is that one’s security should never
depend on components of the system that one does not trust. Fabric
provides security assurance through a combination of mechanisms
at the language and system levels.

Fabric gives programmers a high-level programming abstraction
in which security policies and some distributed computing features

321

are explicitly visible to the programmer. Programmers access Fabric
objects in a uniform way, even though the objects may be local or
remote, persistent or nonpersistent, and object references may cross
between Fabric nodes.

The Fabric programming language is an extension to the Jif pro-
gramming language [33, 36], in turn based on Java [50]; Fabric ex-
tends Jif with support for distributed programming and transactions.
Like Jif, Fabric has several mechanisms, including access control
and information flow control, to prevent untrusted nodes from vi-
olating confidentiality and integrity. All objects in Fabric are la-
beled with policies from the decentralized label model (DLM) [34],
which expresses security requirements in terms of principals (e.g.,
users and organizations). Object labels prevent a node that is not
trusted by a given principal from compromising the security policies
of that principal. Therefore, Fabric has fine-grained trust manage-
ment that allows principals to control to what extent other principals
(and nodes) can learn about or affect their information.

To achieve good performance while enforcing security, Fabric
supports both data shipping, in which data moves to where compu-
tation is happening, and function shipping, in which computations
move to where data resides. Data shipping enables Fabric nodes
to compute using cached copies of remote objects, with good per-
formance when the cache is populated. Function shipping enables
computations to span multiple nodes. Inconsistency is prevented
by performing all object updates within transactions, which are ex-
posed at the language level. The availability of information, and
scalability of Fabric, are increased by replicating objects within a
peer-to-peer dissemination layer.

Of course, there has been much previous work on making dis-
tributed systems both easier to build and more secure. Prior mech-
anisms for remotely executing code, such as CORBA [41], Java
RMI [24], SOAP [52] and web services [5], generally offer only
limited support for information security, consistency, and data ship-
ping. J2EE persistence (EJB) [16] provides a limited form of trans-
parent access to persistent objects, but does not address distrust
or distributed computation. Peer-to-peer content-distribution and
wide-area storage systems (e.g., [15, 19, 27, 44]) offer high data
availability, but do little to ensure that data is neither leaked to nor
damaged by untrusted users. Nor do they ensure consistency of mu-
table data. Prior distributed systems that enforce confidentiality and
integrity in the presence of distrusted nodes (e.g., [57, 11, 56]) have
not supported consistent computations over persistent data.

Fabric integrates many ideas from prior work, including compile-
time and run-time information flow, access control, peer-to-peer
replication, and optimistic transactions. This novel integration makes
possible a higher-level programming model that simplifies reason-
ing about security and consistency. Indeed, it does not seem possible
to provide a high-level programming model like that of Fabric by
simply layering previous distributed systems abstractions. Several
new ideas were also needed to make Fabric possible:

• A programming language that integrates information flow, per-
sistence, transactions, and distributed computation.

• A trust ordering on information-flow labels, supporting rea-
soning about information flow in distributed systems.

• An integration of function shipping and data shipping that
also enforces secure information flows within and among net-
work nodes.

• A way to manage transactions distributed among mutually
distrusting nodes, and to propagate object updates while en-
forcing confidentiality and integrity.

Fabric does not require application developers to abandon other

dissemination nodes
replicate popular objects

for high availability

worker nodes
compute on cached
persistent objects

storage nodes
securely store

 persistent objects

read

transaction

write

remote
call

disseminate

subscribe

Figure 1: Fabric architecture

standards and methodologies; it seems feasible for Fabric to interop-
erate with other standards. In fact, Fabric already interoperates with
existing Java application code. It seems feasible to implement many
existing abstractions (e.g., web services) using Fabric. Conversely,
it seems feasible to implement Fabric nodes by encapsulating other
services such as databases. We leave further work on interoperabil-
ity to the future.

The rest of this paper describes the design and implementation
of Fabric. Section 2 presents the Fabric architecture in more detail.
Section 3 introduces the Fabric language. Section 4 covers cache
and transaction management. Section 5 explains how multinode
transactions are implemented. Some details of the Fabric implemen-
tation are given in Section 6; with the exception of certain explicitly
identified features, the design described in this paper has been im-
plemented in a prototype. Section 7 reports on our evaluation of this
implementation, including results for the expressiveness of Fabric
and the performance of a substantial application built using Fabric.
Related work is covered in Section 8, and Section 9 concludes.

2. Architecture
Fabric nodes take on one of the three roles depicted in Figure 1:

• Storage nodes (or stores) store objects persistently and pro-
vide object data when requested.

• Worker nodes perform computation, using both their own ob-
jects and possibly copies of objects from storage nodes or
other worker nodes.

• Dissemination nodes provide copies of objects, giving worker
nodes lower-latency access and offloading work from storage
nodes.

Although Fabric nodes serve these three distinct roles, a single
host machine can have multiple Fabric nodes on it, typically colo-
cated in the same Java VM. For example, a store can have a colo-

322

cated worker, allowing the store to invoke code at the worker with
low overhead. This capability is useful, for example, when a store
needs to evaluate a user-defined access control policy to decide whether
an object update is allowed. It also gives the colocated worker the
ability to efficiently execute queries against the store. Similarly, a
worker node can be colocated with a dissemination node, making
Fabric more scalable.

2.1 Object model
Information in Fabric is stored in objects. Fabric objects are sim-

ilar to Java objects; they are typically small and can be manipulated
directly at the language level. Fabric also has array objects, to sup-
port larger data aggregates. Like Java objects, Fabric objects are
mutable and are equipped with a notion of identity.

Naming. Objects are named throughout Fabric by object identi-
fiers (oids). An object identifier has two parts: a store identifier,
which is a fully qualified DNS hostname, and a 64-bit object num-
ber (onum), which identifies the object on that host. An object
identifier can be transmitted through channels external to Fabric,
by writing it as a uniform resource locator (URL) with the form
fab://store/onum, where store is a fully qualified DNS host-
name and onum is the object number.

An object identifier is permanent in the sense that it continues to
refer to the same object for the lifetime of that object, and Fabric
nodes always can use the identifier to find the object. If an object
moves to a different store, acquiring an additional oid, the original
oid still works because the original store has a surrogate object con-
taining a forwarding pointer. Path compression is used to prevent
long forwarding chains.

Knowing the oid of an object gives the power to name that ob-
ject, but not the power to access it: oids are not capabilities [18].
If object names were capabilities, then knowing the name of an ob-
ject would confer the power to access any object reachable from
it. To prevent covert channels that might arise because adversaries
can see object identifiers, object numbers are generated by a crypto-
graphically strong pseudorandom number generator. Therefore, an
adversary cannot probe for the existence of a particular object, and
an oid conveys no information other than the name of the node that
persistently stores the object.

Fabric uses DNS to map hostnames to IP addresses, but relies
on X.509 certificates to verify the identity of the named hosts and
to establish secure SSL connections to them. Therefore, certificate
authorities are the roots of trust and naming, as in the Web.

Fabric applications can implement their own naming schemes us-
ing Fabric objects. For example, a naming scheme based on direc-
tories and pathnames is easy to implement using a hash map.

Labels. Every object has an associated label that describes the con-
fidentiality and integrity requirements associated with the object’s
data. It is used for information flow control and to control access to
the object by Fabric nodes. This label is automatically computed by
the Fabric run-time system based on programmer annotations and a
combination of compile-time and run-time information flow analy-
sis. Any program accepted by the Fabric type system is guaranteed
to pass access control checks at stores, unless some revocation of
trust has not yet propagated to the worker running it.

Classes. Every Fabric object, including array objects, contains the
oid of its class object, a Fabric object representing its class in the
Fabric language. The class object contains both the fully-qualified
path to its class (which need not be unique across Fabric) and the
SHA-256 hash of the class’s bytecode (which should be globally
unique). The class object creates an unforgeable binding between
each object and the correct code for implementing that object. The

class object can also include the actual class bytecode, or the class
bytecode can be obtained through an out-of-band mechanism and
then checked against the hash. When objects are received over the
network, the actual hash is verified against the expected one.

Versions. Fabric objects can be mutable. Each object has a current
version number, which is incremented when a transaction updates
the object. The version number distinguishes current and old ver-
sions of objects. If worker nodes try to compute with out-of-date
object versions, the transaction commit will fail and will be retried
with the current versions. The version number is an information
channel with the same confidentiality and integrity as the fields of
the object; therefore, it is protected by the same mechanisms.

2.2 Security and assumptions
The design of Fabric is intended to allow secure sharing of com-

putations and information, despite the presence of adversaries that
control some Fabric nodes. The security of any system rests on as-
sumptions about the threats it is designed to protect against. The
assumptions that Fabric makes about adversaries are largely typical,
and weak, which strengthens Fabric’s security assurance.

Compromised nodes are assumed to be malicious, so they may
appear to participate correctly in Fabric protocols, and to execute
code correctly, while behaving maliciously. The Fabric run-time ex-
poses some information to Fabric nodes that is not visible at the lan-
guage level, such as object identifiers and version numbers; this in-
formation is visible to compromised nodes, which can attack below
the language level of abstraction. Compromised nodes may mis-
use any information they receive, including cryptographic keys, and
may supply corrupted information to other nodes. However, with-
out the corresponding private keys, nodes are assumed not to be able
to learn anything about encrypted content except its size, and cannot
fake digital signatures. Fabric does not attempt to control read chan-
nels [55] at the language level. As with most work on distributed
systems, timing and termination channels are ignored.

Network adversaries are assumed not to be able to read or fabri-
cate messages. This assumption is justified in Fabric by using SSL
for all network communication. However, an adversary might still
learn information about what is happening in Fabric from the size,
existence, or timing of network messages. As in other work on dis-
tributed systems, these covert channels are ignored. A network ad-
versary can also prevent message delivery. The availability of ser-
vices written using Fabric therefore depends on an assumption that
the network delivers messages eventually.

Fabric users are able to express partial or complete trust in Fabric
nodes. Therefore, statements of trust are security assumptions of the
users expressing trust. If a user expresses trust in a node, the com-
promise of that node might harm the security of that user. In fact,
the degree of trust expressed bounds the degree to which security
might be violated from the perspective of that user.

2.3 Storage nodes
Storage nodes (stores) persistently store objects and provide copies

of object data on request to both worker nodes and dissemination
nodes. Access control prevents nodes from obtaining data they should
not see. When a worker requests a copy of an object from a store,
the store examines the confidentiality part of the object’s label, and
provides the object only if the requesting node is trusted enough to
read it. Therefore the object can be sent securely in plaintext be-
tween the two nodes (though it is of course encrypted by SSL). This
access control mechanism works by treating each Fabric node as a
principal. Each principal in Fabric keeps track of how much it trusts
the nodes that it interacts with. Trust relationships are created by the
delegation mechanisms described in Section 3.1.

323

Objects on a store are associated with object groups containing a
set of related objects. When an object is requested by a worker or
dissemination node, the entire group is prefetched from the store,
amortizing the cost of store operations over multiple objects. Every
object in the object group is required to have the same security pol-
icy, so that the entire group can be treated uniformly with respect to
access control, confidentiality and integrity. The binding between
an object and its group is not permanent; the store constructs object
groups as needed and discards infrequently used object groups. To
improve locality, the store tries to create object groups from objects
connected in the object graph.

After a worker fetches an object, it can perform computations us-
ing this cached copy, perhaps modifying its state. When the transac-
tion containing these computations completes, the worker commits
object updates to the stores that hold objects involved in the trans-
action. The transaction succeeds only if it is serializable with other
transactions at those stores. As with object fetch requests, the store
also enforces access control on update requests based upon the de-
gree of trust in the worker and the integrity policies in these objects’
labels.

2.4 Worker nodes
Workers execute Fabric programs. Fabric programs may be writ-

ten in the Fabric language. Trusted Fabric programs—that is, trusted
by the worker on which they run—may incorporate code written in
other languages, such as the Fabric intermediate language, FabIL.
However, workers will run code provided by other nodes only if the
code is written in Fabric, and signed by a trusted node.

Fabric could, in principle, provide certifying compilation [38], al-
lowing Fabric nodes to check that compiled code obeys the Fabric
type system—and therefore that it correctly enforces access control
and information flow control—without relying on trusting the com-
piler or the node that runs it. The design and implementation of this
feature are left to future work.

Fabric programs modify objects only inside transactions, which
the Fabric programming language exposes to the programmer as
a simple atomic construct. Transactions can be nested, which is
important for making code compositional. During transactions, ob-
ject updates are logged in an undo/redo log, and are rolled back if
the transaction fails either because of inconsistency, deadlock, or an
application-defined failure.

A Fabric program may be run entirely on a single worker that
issues requests to stores (or to dissemination nodes) for objects that
it needs. This data-shipping approach makes sense if the cost of
moving data is small compared to the cost of computation, and if
the objects’ security policies permit the worker to compute using
them.

When data shipping does not make sense, function shipping may
be used instead. Execution of a Fabric program may be distributed
across multiple workers, by using remote method calls to transfer
control to other workers. Remote method calls in Fabric differ from
related mechanisms such as Java RMI [24] or CORBA [41]:

• The receiver object on which the method is invoked need not
currently be located at the remote worker (more precisely,
cached at it). In fact, the receiver object could be cached at
the caller, at the callee, or at neither. Invocation causes the
callee worker to cache a copy of the receiver object if it does
not yet have a copy.

• The entire method call is executed in its own nested transac-
tion, the effects of which are not visible to other code run-
ning on the remote node. These effects are not visible until
the commit of the top-level transaction containing the nested

transaction. The commit protocol (Section 4.3) causes all
workers participating in the top-level transaction to commit
the subtransactions that they executed as part of it.

• Remote method calls are subject to compile-time and run-
time access control checks. The caller side is checked at com-
pile time to determine if the callee is trusted enough to enforce
security for the method; the callee checks at run time that the
calling node is trusted enough to invoke the method that is be-
ing called and to see the results of the method (Section 3.5).

Fabric workers are multithreaded and can concurrently serve re-
quests from other workers. Pessimistic concurrency control (lock-
ing) is used to isolate transactions in different threads from each
other.

One important use of remote calls is to invoke an operation on a
worker colocated with a store. Since a colocated worker has low-
cost access to persistent objects, this can improve performance sub-
stantially. This idea is analogous to a conventional application issu-
ing a database query for low-cost access to persistent data. In Fab-
ric, a remote call to a worker that is colocated with a store can be
used to achieve this goal, with two advantages compared to database
queries: the worker can run arbitrary Fabric code, and information-
flow security is enforced.

2.5 Dissemination nodes
To improve the scalability of Fabric, a store can send copies of

objects to dissemination nodes. Rather than requesting objects from
remote or heavily loaded stores, workers can request objects from
dissemination nodes. Dissemination nodes improve scalability be-
cause they help deal with popular objects that would otherwise turn
the stores holding them into bottlenecks. Objects are disseminated
at the granularity of object groups, to amortize the costs associated
with fetching remote objects.

Stores provide object data in encrypted form on request to dis-
semination nodes. Receiving encrypted objects does not require as
much trust, because the fields of the object are not visible without
the object’s encryption key, which dissemination nodes do not in
general possess.

Fabric has no prescribed dissemination layer; workers may use
any dissemination nodes they choose, and dissemination nodes may
use whatever mechanism they want to find and provide objects. In
the current Fabric implementation, the dissemination nodes form a
peer-to-peer content distribution network based on FreePastry [47].
However, other dissemination architectures can be substituted if the
interface to workers and stores remains the same.

To avoid placing trust in the dissemination layer, disseminated
object groups are encrypted using a symmetric key and signed with
the public key of the originating store. The symmetric encryption
key is stored in a key object that is not disseminated and must be
fetched directly from its store. When an object group is fetched, the
dissemination node sends the oid of the key object and the random
initialization vector needed for decryption. Key objects are ordi-
narily shared across many disseminated object groups, so workers
should not need to fetch them often.

Disseminated object groups are identified by dissemination nodes
based on the oid of a contained object called the head object. The
oid of the head object is exposed in the object group, but other oids
in the object group (and the contents of all objects) are hidden by
encryption.

To help keep caches up to date, workers and dissemination nodes
are implicitly subscribed to any object group they read from a store.
When any object in the group is updated, the store sends the updated
group to its subscribers. The dissemination layer is responsible for

324

pushing updated groups to workers that have read them. A transac-
tion that has read out-of-date data can then be aborted and retried by
its worker on receipt of the updated group.

The fetch requests that dissemination nodes receive may allow
them to learn something about what workers are doing. To control
this information channel, dissemination nodes are assigned a label
representing the maximum confidentiality of information that may
leak on this channel. Workers use dissemination nodes only for fetch
requests that do not leak more than this maximum. Other requests
go directly to stores.

3. The Fabric language
Fabric offers a high-level programming language for building dis-

tributed programs. This language permits code running at a given
Fabric node to access objects or code residing at other nodes in the
system.

The Fabric programming language is an extension to the Jif pro-
gramming language [33, 36], which also enforces secure informa-
tion flow and has been used to build a few significant systems (e.g.,
[21, 14]). To support distributed programming, Fabric adds two ma-
jor features to Jif:

• Nested transactions ensure that computations observe and up-
date objects consistently, and support clean recovery from
failures.

• Remote method calls (remote procedure calls to methods) al-
low distributed computations that span many workers.

These features are unusual but not new (e.g., Argus [30] has both,
though it lacks data shipping between workers). What is new is
combining these features with information flow security, which re-
quires new mechanisms so that, for example, transactions do not
leak confidential information, and remote calls are properly autho-
rized. To support compile-time and run-time security enforcement
for secure distributed computation, Fabric adds a new trust order-
ing on information flow labels. Further, Fabric extends Jif with new
support for trust management, integrated with a public-key infras-
tructure (PKI).

3.1 Principals
Principals capture authority, privilege, and trust in Fabric. Prin-

cipals represent users, roles, groups, organizations, privileges, and
Fabric nodes. As in Jif [33], they are manifested in the Fabric pro-
gramming language as the built-in type principal.

When running, Fabric code can possess the authority of a prin-
cipal, and may carry out actions permitted to that principal. The
authority to act as principal p can be delegated during a method call,
if the method is annotated with a clause where caller(p). This
model of delegating authority has similarities to Java stack inspec-
tion [53]; it differs in that authority is statically checked except at
remote method calls, where the receiver checks that the caller is suf-
ficiently trusted.

Trust relationships between principals are represented by the acts-
for relation [35]. If principal p acts for principal q, any action by
principal p can be considered to come from principal q as well.
These actions include statements made by principal p. Thus, this
acts-for relationship means q trusts p completely. We write this re-
lationship more compactly as p < q. The acts-for relation < is
transitive and reflexive. There is a top principal > that acts for all
other principals and a bottom principal ⊥ that all principals act for.
The operators ∧ and ∨ can be used to form conjunctions and dis-
junctions of principals.

The acts-for relation can be used for authorization of an action.
The idea is to create a principal that represents the privilege needed
to perform the action. Any principal that can act for the privilege
principal is then able to perform the action. In Fabric code, an access
control check is expressed explicitly using if. To check if user <
priv, we write:

principal user, priv;
...
if (user actsfor priv) {

... do action ...
}

The Fabric model of principals extends that of Jif 3.0 [13], which
represents principals as objects inherited from the abstract class fab-
ric.lang.Principal. Instances of any subclass can be used as
principals, and the methods of these classes automatically possess
the authority of the instance this—an object acts for at least it-
self. Principals control their acts-for relationships by implementing
a method p.delegatesTo(q), which tests whether q acts for p.
This allows a principal to say who can directly act for it; the Fabric
run-time system at each worker node automatically computes and
caches the transitive closure of these direct acts-for relationships.
The run-time system also exposes operations for notifying it that
acts-for relationships have been added and removed. These oper-
ations cause the acts-for cache to be updated conservatively to re-
move any information that might be stale. In general, worker nodes
may have different partial views of the acts-for relation; this is not a
problem, because of the monotonicity of the label system [35].

Unlike in SIF, acts-for relationships can be used by principals to
specify the degree to which they trust Fabric nodes. Fabric nodes are
represented as first-class objects in Fabric, and they are also princi-
pals. For example, a storage node might be represented as a variable
s. The test s actsfor p would then test whether p trusts s. This
would always be the case if the principal p were stored at store s.

Principals implement their own authentication. Principal objects
have an authenticate method that implements authentication and
also optionally some authorization. This method takes as an argu-
ment an authentication proof that establishes the right of the caller
to perform an action, provided to authenticate as a closure. Prin-
cipals can implement authentication proofs in many ways—for ex-
ample, using digital signatures or even passwords. Authentication
proofs allow trust to be bootstrapped in Fabric. For example, if user
u wants to start using Fabric from a new worker w, the user can
establish that the worker is trusted by adding the acts-for relation
w < u. To add the relation requires the authority of u, so code on
the worker makes a remote call to u.authenticate on another,
trusted worker, passing an authentication proof and a closure that
invokes u.addDelegatesTo(w).

Fabric has a built-in way to authenticate worker nodes as corre-
sponding to their Fabric worker node objects. This is accomplished
using X.509 certificates [23] that include the node’s hostname and
the oid of its principal object. Whether the certificates of a given
certificate authority are accepted is decided by the Fabric node re-
ceiving them.

3.2 Labels
Information security is provided by information flow control. All

information is labeled with policies for confidentiality and integrity.
These labels are propagated through computation using compile-
time type checking, but run-time checks are used for dynamic poli-
cies and to deal with untrusted nodes.

Information flow security policies are expressed in terms of prin-
cipals, which is important because it enables the integration of ac-
cess control and information flow control. A key use of this integra-

325

tion is for authorizing the downgrading of information flow policies
through declassification (for confidentiality) and endorsement (for
integrity).

For example, the confidentiality policy alice→bob says that
principal alice owns the policy and that she permits principal bob
to read it. Similarly, the integrity policy alice←bob means that
alice permits bob to affect the labeled information. A label is sim-
ply a set of such policies, such as {alice→bob; bob→alice}.

These decentralized labels [35] keep track of whose security is
being enforced, which is useful for Fabric, where principals need to
cooperate despite mutual distrust. On a worker w trusted by alice

(i.e., w < alice), information labeled with the policy alice→bob

can be explicitly declassified by code that is running with the au-
thority of alice, removing that policy from its label.

Information flow ordering. The Fabric compiler checks infor-
mation flows at compile time to ensure that both explicit and im-
plicit [17] information flows are secure. The information flow or-
dering L1 v L2 captures when information flow from L1 to L2 is
secure. For example, we have {alice → bob} v {charlie →
dora} exactly when charlie < alice, and dora < bob or
dora < alice.1 Integrity works the opposite way, because in-
tegrity policies allow flow from trusted sources to untrusted recip-
ients: the relationship {alice ← bob} v {charlie ← dora}
holds iff we have alice < charlie, and bob < dora or bob <
charlie. See [34] for more justification of these rules.

The following code illustrates these rules. The assignment from
y to x (line 3) is secure because the information in y can be learned
by fewer readers (only bob rather than both bob and charlie). The
assignment from x to y (line 4) is rejected by the compiler, because
it permits charlie to read the information. However, the second
assignment from x to y (line 6) is allowed because it occurs in a
context where charlie is known to act for bob, and can therefore
already read any information that bob can.

1 int {alice→bob} x;

2 int {alice→bob, charlie} y;

3 x = y; // OK: bob < (bob ∨ charlie)

4 y = x; // Invalid

5 if (charlie actsfor bob) {

6 y = x; // OK: (bob ∨ charlie) < bob

7 }

Trust ordering. Fabric extends the DLM by defining a second
ordering on labels, the trust ordering, which is useful for reasoning
about the enforcement of policies by a partially trusted platform. A
label L1 may require at least as much trust as a label L2, which we
write as L1 < L2 by analogy with the trust ordering on principals.
If L1 requires at least as much trust as L2, then any platform trusted
to enforce L1 is also trusted to enforce L2. This happens when
L1 describes confidentiality and integrity policies that are at least
as strong as those in L2; unlike in the information flow ordering,
integrity is not opposite to confidentiality in the trust ordering.

Therefore, both confidentiality and integrity use the same rules in
the trust ordering: both {alice → bob} < {charlie → dora}
and {alice← bob} < {charlie← dora} are true exactly when
alice < charlie and bob < dora ∨ charlie.

Figure 2 depicts how the two label orderings relate. In the infor-
mation flow ordering, the least label describes information that can
be used everywhere, because it is public and completely trustwor-
thy: {⊥ → ⊥;> ← >}. The greatest label describes information
1The final disjunct is there because alice is implicitly a reader
in her own policy; the policy alice→bob is equivalent to
alice→bob∨alice, also written as alice→bob, alice.

labels

trust (≼)
{⊥→⊥; ⊤←⊤}

information
flow
(⊑)

{⊤→⊤; ⊥←⊥}

{⊥→⊥; ⊥←⊥} {⊤→⊤; ⊤←⊤}

co
nfi

de
nti

alit
yintegrity

Figure 2: Orderings on the space of labels

that can be used nowhere, because it is completely secret and com-
pletely untrustworthy: {> → >;⊥ ← ⊥}. In the trust ordering,
the least label describes information that requires no trust to enforce
its security, because it is public and untrusted: {⊥ → ⊥;⊥ ← ⊥}.
Because policies owned by ⊥ can be dropped, this is the default
label, which can be written as {}. The greatest label in the trust
ordering is for information that is maximally secret and trusted:
{> → >;> ← >}.

3.3 Object labels
Every Fabric object has a single immutable label that governs the

use of information in that object. The label determines which stor-
age nodes can store the object persistently and which worker nodes
can cache and compute directly on the object. It also controls which
object groups an object may be part of and which key objects may
be used to encrypt it. This is a simplification of Jif, which permits
object fields to have different labels. Jif objects whose fields have
different labels can be encoded as Fabric objects by introducing an
additional level of indirection.

An object with label Lo may be stored securely on a store n if
the store is trusted to enforce Lo. Recalling that n can be used as a
principal, this condition is captured formally using the trust ordering
on labels:

{> → n;> ← n} < Lo (1)

To see this, suppose Lo has a confidentiality policy {p→ q}, which
is equivalent to {p→ p∨q}. Condition 1 implies n < p or n < q—
either p must trust n, or p must believe that n is allowed to read
things that q is allowed to read. Conversely, if Lo has an integrity
policy {p← q}, we require the same condition, n < p ∨ q—either
p trusts n, or p believes that n is allowed to affect things that q is.
Therefore we can write L(n) to denote the label corresponding to
node n, which is {> → n;> ← n}, and express condition 1 simply
as L(n) < Lo.

Fabric classes may be parameterized with respect to labels or
principals, so different instances of the same class may have dif-
ferent labels. This allows implementation of reusable classes, such
as data structures that can hold information with different labels.

By design, Fabric does not provide persistence by reachability [3],
because it can lead to unintended persistence. Therefore, construc-
tors are annotated to indicate on which store the newly created ob-
ject should be made persistent. The call new C@s(...) creates a
new object of class C whose store is identified by the variable s. No
communication with the store is needed until commit. If the store of
an object is omitted, the new object is created at the same store as the
object whose method calls new. Objects may have non-final fields

326

1 void m1{alice←} () {

2 Worker w = findWorker("bob.cs.cornell.edu");

3 if (w actsfor bob) {

4 int{alice→bob} data = 1;

5 int{alice→} y = m2@w(data);

6 }

7 }

8

9 int{alice→bob} m2{alice←} (int{alice→bob} x) {

10 return x+1;

11 }

Figure 3: A remote call in Fabric

that are marked transient. These transient fields are not saved
persistently, which is similar to their treatment by Java serialization.

3.4 Tracking implicit flows
Information can be conveyed by program control flow. If not

controlled, these implicit flows can allow adversaries to learn about
confidential information from control flow, or to influence high-
integrity information by affecting control flow.

Fabric controls implicit flows through the program-counter la-
bel, written Lpc, which captures the confidentiality and integrity
of control flow. The program-counter label works by constraining
side effects; to assign to a variable x with label Lx, Fabric requires
Lpc v Lx. If this condition does not hold, either information with a
stronger confidentiality policy could leak into x or information with
a weaker integrity policy could affect x.

Implicit flows cross method-call boundaries, both local and re-
mote. To track these flows, object methods are annotated with a
begin label that constrains the program counter label of the caller.
The Lpc of the caller must be lower than or equal to the begin label.
Implicit flows via exceptions and other control flow mechanisms are
also tracked [33].

Because implicit flows are controlled, untrusted code and un-
trusted data cannot affect high-integrity control flow unless an ex-
plicit downgrading action is taken, using the authority of the prin-
cipals whose integrity policies are affected. Further, because Fabric
enforces robustness [12], untrusted code and untrusted data cannot
affect information release. Thus, Fabric provides general protection
against a wide range of security vulnerabilities.

3.5 Remote calls
Distributed control transfers are always explicit in Fabric. Fab-

ric introduces the syntax o.m@w(a1,...,an) to signify a remote
method call to the worker node identified by variable w, invoking
the method m of object o. Figure 3 shows example code in which
at line 5, a method m1 calls a method m2 on the same object, but at
a remote worker that is dynamically looked up using its hostname.
If the syntax @w is omitted, the method call is always local, even if
the object o is not cached on the current node (in this case the object
will be fetched and the method invoked locally).

Remote method calls are subject to both compile-time and run-
time checking. The compiler permits a call to a remote method only
if it can statically determine that the call is secure. Information sent
to a worker w can be read by the worker, so all information sent
in the call (the object, the arguments, and the implicit flow) must
have labels Ls where Ls v {> → w}. For example, in Figure 3,
the variable data, with label {alice → bob}, can be passed to
method m2 only because the call happens in a context where it is
known that w < bob, and hence {alice→ bob} v {> → w}.

Information received from w can be affected by it, so by a sim-
ilar argument, all returned information must have labels Lr where
{> ← w} v Lr .

The recipient of a remote method call has no a priori knowledge
that the caller is to be trusted, so run-time checking is needed. When
a call occurs from sender worker sw to receiver worker rw, the re-
ceiver checks all information sent or received at label L (includ-
ing implicit flows), to ensure that L(sw) < L. For example, when
bob.cs.cornell.edu receives the remote call to m2, purporting to
provide integrity {alice ←}, it will check that the calling worker
has the authority of alice. Additional compile-time checks prevent
these run-time checks from leaking information themselves.

For example, when the code of Figure 3 invokes method m1, the
node w will check that the calling node acts for alice, because the
initial integrity of the method is {alice ← alice} (written in the
code using the shorthand {alice←}).

3.6 Transactions
All changes to Fabric objects take place inside transactions, to

provide concurrency control and ensure consistency of reads and
writes. A transaction is indicated in Fabric code by the construct
atomic { S }, where S is a sequence of statements. The seman-
tics is that the statement S is executed atomically and in isolation
from all other computations in Fabric. In other words, Fabric en-
forces serializability of transactions.

Accesses to mutable fields of Fabric objects are not permitted out-
side transactions. Reads from objects are permitted outside transac-
tions, but each read is treated as its own transaction.

If S throws an exception, it is considered to have failed, and is
aborted. If S terminates successfully, its side effects become visible
outside its transaction. Failure due to conflict with other transactions
causes the atomic block to be retried automatically. If the maximum
number of retries is exceeded, the transaction is terminated.

Transactions may also be explicitly retried or aborted by the pro-
grammer. A retry statement rolls back the enclosing atomic block
and restarts it from the beginning; an abort statement also rolls
back the enclosing atomic block, but results in throwing the ex-
ception UserAbortException. Aborting a transaction creates an
implicit flow; therefore, Fabric statically enforces that the Lpc of
the abort is lower than or equal to the Lpc of the atomic block:
Labort

pc v Latomic
pc . Exceptions generated by S are checked similarly.

Atomic blocks may be used even during a transaction, because
Fabric allows nested transactions. This allows programmers to en-
force atomicity without worrying about whether their abstractions
are at “top level” or not. Atomic blocks can also be used as a way
to cleanly recover from application-defined failures, via abort.

Multi-worker computations take place in atomic, isolated transac-
tions that span all the workers involved. The Fabric runtime system
ensures that when multiple workers use the same object within a
transaction, updates to the object are propagated between them as
necessary (Section 5.1).

Transactions are single-threaded; new threads cannot be started
inside a transaction, though a worker may run multiple transactions
concurrently. This choice was made largely to simplify the imple-
mentation, though it maps well onto many of the applications for
which Fabric is intended.

Fabric uses a mix of optimistic and pessimistic concurrency con-
trol. In the distributed setting, it is optimistic, because worker nodes
are allowed to compute on objects that are out of date. However,
to coordinate threads running on the same worker, Fabric uses pes-
simistic concurrency control in which threads acquire locks on ob-
jects. Edge chasing [10] allows distributed deadlocks to be detected
in Fabric.

327

3.7 Java interoperability
Fabric programs can be written with a mixture of Java, Fabric, and

FabIL (the Fabric intermediate language). FabIL is an extension to
Java that supports transactions and remote calls, but not information
flow labels or static information flow control. More concretely, Fa-
bIL supports the atomic construct and gives the ability to invoke
methods and constructors with annotations @w and @s respectively.
Transaction management is performed on Fabric and FabIL objects
but not on Java objects, so the effects of failed transactions on Java
objects are not rolled back. The use of FabIL or Java code in Fabric
programs offers lower assurance to principals who trust the nodes
running this code, but it does not undermine the security assurance
offered by the system. FabIL can be convenient for code whose se-
curity properties are not accurately captured by static information
flow analysis, making the labels of the full Fabric language counter-
productive. An example is code implementing cryptography.

4. Caches and transactions
A Fabric worker node holds versions of some subset of all Fab-

ric objects. This subset includes nonpersistent objects allocated by
the worker node itself, as well as cached versions of objects from
stores. During computation on a worker, references to objects not
yet cached at the worker may be followed. The worker then issues
read requests for the missing objects, either to the dissemination
layer or directly to stores. The dissemination layer or store then
responds with an object group that includes the requested object.

4.1 Transaction bookkeeping
During computation on a worker, reads and writes to objects are

logged. The first write to an object during a transaction also logs
the prior state of the object so that it can be restored in case the
transaction aborts. Because transactions can be nested, transaction
logs are hierarchical. When a local subtransaction commits, its log
is merged with the parent transaction log.

To reduce logging overhead, the copy of each object at a worker
is stamped with a reference to the last transaction that accessed the
object. No logging needs to be done for an access if the current
transaction matches the stamp.

4.2 Versions and transaction management
Each object contains a version number that is incremented when

the object is updated by a top-level transaction. At commit time, the
version numbers of read objects are compared against the authorita-
tive versions at the store, to determine whether the transaction used
up-to-date information.

To conserve memory, cached objects may be evicted if they have
no uncommitted changes. In the current implementation, eviction
is accomplished automatically by the Java run-time system, because
cached objects are referenced using a Java SoftReference object.
The worker records the version numbers of read objects for use at
commit time.

When worker w commits to store s, the commit includes the ver-
sions of objects read and written during the transaction and the new
data for the written objects. For security, the store checks the la-
bel Lo of each updated object to ensure that w is trusted to modify
the object; the test is L(w) < Lo. This check also ensures that the
version number reported by the worker is meaningful.

4.3 Hierarchical commit protocol
In general, a transaction may span worker nodes that do not trust

each other. This creates both integrity and confidentiality concerns.
An untrusted node cannot be relied to commit its part of a transac-
tion correctly. More subtly, the commit protocol might also cause

Bank
cores
Bank
cores

Bank
worker

Airline
worker

Bank
stores

Bank
cores
Bank
cores

Airline
stores

Broker
worker

customer
worker

Figure 4: A hierarchical, distributed transaction

an untrusted node to learn information it should not. Just learning
the identities of other nodes that participated in a transaction could
allow sensitive information to be inferred. Fabric’s hierarchical two-
phase commit protocol avoids these problems.

For example, consider a transaction that updates objects owned
by a bank and other objects owned by an airline, perhaps as part of
a transaction in which a ticket is purchased (see Figure 4). The bank
and the airline do not necessarily trust each other; nor do they trust
the customer purchasing the ticket. Therefore some computation is
run on workers managed respectively by the bank and the airline.
When the transaction is to be committed, some updates to persistent
objects are recorded on these different workers.

Because the airline and the bank do not trust the customer, their
workers will reject remote calls from the customer—the customer’s
worker lacks sufficient integrity. Therefore, this scenario requires
the customer to find a trusted third party. As shown in the figure, a
third-party broker can receive requests from the customer, and then
invoke operations on the bank and airline. Because the broker runs
at a higher integrity level than the customer that calls it, Fabric’s
endorsement mechanism must be used to boost integrity. This re-
flects a security policy that anyone is allowed to make requests of
the broker. It is the responsibility of the broker to sanitize and check
the customer request before endorsing it and proceeding with the
transaction.

The hierarchical commit protocol begins with the worker that
started the top-level transaction. It initiates commit by contacting
all the stores for whose objects it is the current writer, and all the
other workers to which it has issued remote calls. These other work-
ers then recursively do the same, constructing a commit tree. This
process allows all the stores involved in a transaction to be informed
about the transaction commit, without relying on untrusted workers
to choose which workers and stores to contact and without reveal-
ing to workers which other workers and stores are involved in the
transaction lower down in the commit tree. The two-phase commit
protocol then proceeds as usual, except that messages are passed
up and down the commit tree rather than directly between a single
coordinator and the stores.

Of course, a worker in this tree could be compromised and fail to
correctly carry out the protocol, causing some stores to be updated
in a way that is inconsistent with other stores. However, a worker
that could do this could already have introduced this inconsistency
by simply failing to update some objects or by failing to issue some
remote method calls. In our example above, the broker could cause
payment to be rendered without a ticket being issued, but only by
violating the trust that was placed in it by the bank and airline. The
customer’s power over the transaction is merely to prevent it from
happening at all, which is not a security violation.

Once a transaction is prepared, it is important for the availabil-

328

ity of the stores involved that the transaction is committed quickly.
The transaction coordinator should remain available, and if it fails
after the prepare phase, it must recover in a timely way. An unavail-
able transaction coordinator could become an availability problem
for Fabric, and the availability of the coordinator is therefore a trust
assumption. To prevent denial-of-service attacks, prepared transac-
tions are timed out and aborted if the coordinator is unresponsive.
In the example given, the broker can cause inconsistent commits
by permanently failing after telling only the airline to commit, in
which case the bank will abort its part of the transaction. This fail-
ure is considered a violation of trust, but in keeping with the secu-
rity principles of Fabric, the failing coordinator can only affect the
consistency of objects whose integrity it is trusted to enforce. This
design weakens Fabric’s safety guarantees in a circumscribed way,
in exchange for stronger availability guarantees.

4.4 Handling failures of optimism
Computations on workers run transactions optimistically, which

means that a transaction can fail in various ways. The worker has
enough information to roll the transaction back safely in each case.
At commit time the system can detect inconsistencies that have arisen
because another worker has updated an object accessed during the
transaction. The stores inform the workers which objects involved in
the transaction were out of date; the workers then flush their caches
of the stale objects before retrying.

Another possible failure is that the objects read by the transac-
tion are already inconsistent, breaking invariants on which the code
relies. Broken invariants can lead to errors in the execution of the
program. Incorrectly computed results are not an issue because they
will be detected and rolled back at commit time. Exceptions may
also result, but as discussed earlier, exceptions also cause trans-
action failure and rollback. Finally, a computation might diverge
rather than terminate. Fabric handles divergence by retrying trans-
actions that are running too long. On retry, the transaction is given
more time in case it is genuinely a long-running transaction. By
geometrically growing the retry timeout, the expected run time is
inflated by only a constant factor.

Because Fabric has subscription mechanisms for refreshing work-
ers and dissemination nodes with updated objects, the object cache
at a worker should tend to be up to date, and inconsistent computa-
tions can be detected before a transaction completes.

5. Distributed computation
Fabric transactions can be distributed across multiple workers by

executing remote calls within a transaction. The whole transaction
runs in isolation from other Fabric transactions, and its side effects
are committed atomically. The ability to distribute transactions is
crucial for reconciling expressiveness with security. Although some
workers are not trusted enough to read or write some objects, it is
secure for them to perform these updates by calling code on a suffi-
ciently trusted worker.

5.1 Writer maps
An object can be accessed and updated by multiple workers within

a distributed transaction, each of which may be caching the ob-
ject. This is challenging. For consistency, workers need to com-
pute on the latest versions of the shared object as they are updated.
For performance, workers should be able to locally cache objects
that are shared but not updated. For security, updates to an object
with confidentiality L should not be learned by a worker c unless
L v {> → c}. To allow workers to efficiently check for updates to
objects they are caching, without revealing information to workers
not trusted to learn about updates, Fabric introduces writer maps.

worker 1

worker 2

start A

B

C

D

A
B
C
D

Global view

Figure 5: Logs of nested distributed transactions

If an object is updated during a distributed transaction, the node
performing the update becomes the object’s writer and stores the
definitive copy of the object. If the object already has a writer, it is
notified and relinquishes the role (this notification is not a covert
channel because the write must be at a level lower than the ob-
ject’s label, which the current writer is already trusted to read). The
change of object writer is also recorded in the writer map, which is
passed through the distributed computation along with control flow.

The writer map contains two kinds of mappings: writer map-
pings and label mappings. An update to object o at worker w adds
a writer mapping with the form hash(oid, tid, key) 7→ {w}key,
where oid is the oid of object o, tid is the transaction identifier,
and key is the object’s encryption key, stored in its key object. This
mapping permits a worker that has the right to read or write o—and
therefore has the encryption key for o—to learn whether there is a
corresponding entry in the writer map, and to determine which node
is currently the object’s writer. Nodes lacking the key cannot exploit
the writer mapping because without the key, they cannot verify the
hash. Because the transaction id is included in the hash, they also
cannot watch for the appearance of the same writer mapping across
multiple transactions.

Label mappings support object creation. The creation of a new
object with oid oid adds an entry with the form hash(oid) 7→
oidlabel, where oidlabel is the oid of the object’s label, which con-
tains the object’s encryption key. This second kind of mapping al-
lows a worker to find the encryption key for newly created objects,
and then to check the writer map for a mapping of the first kind.

The writer map is an append-only structure, so if an untrusted
worker fails to maintain a mapping, it can be restored. The size of
the writer map is a covert channel, but the capacity of this chan-
nel is bounded by always padding out the number of writer map
entries added by each worker to the next largest power of 2, intro-
ducing dummy entries containing random data as needed. Therefore
a computation that modifies n objects leaks at most lg lg n bits of
information.

5.2 Distributed transaction management
To maintain consistency, transaction management must in gen-

eral span multiple workers. A worker maintains transaction logs
for each top-level transaction it is involved in. These transaction
logs must be stored on the workers where the logged actions oc-
curred, because the logs may contain confidential information that
other workers may not see. Figure 5 illustrates the log structures that
could result in a distributed transaction involving two workers. In
the figure, a transaction (A) starts on worker 1, then starts a nested
subtransaction (B), then calls code on worker 2, which starts an-
other subtransaction (C) there. That code then calls back to worker

329

1, starting a third subtransaction (D). Conceptually, all the transac-
tion logs together form a single log that is distributed among the
participating workers, as shown on the right-hand side. When D
commits, its log is conceptually merged with the log of C, though
no data is actually sent. When C commits, its log, including the log
of D, is conceptually merged with that of B. In actuality, this causes
the log of D to be merged with that of B, but the log for C remains
on worker 2. When the top-level transaction commits, workers 1
and 2 communicate with the stores that they have interacted with,
using their respective parts of the logs.

6. Implementation
The Fabric implementation uses a mixture of Java, FabIL, and

Fabric code. Not counting code ported to FabIL from earlier Java
and Jif libraries, the implementation includes a total of 33k lines of
code.

In addition to a common base of 6.5k lines of code supporting the
worker, store, and dissemination nodes, the worker is implemented
as 6.4k lines of Java code and 4.6k lines of FabIL code; the store is
2.8k lines of Java; and the dissemination layer is 1.5k lines of Java
code. In addition, some of the GNU Classpath collection libraries
have been ported to FabIL for use by Fabric programs (another 12k
lines of code),

The Fabric compiler, supporting both Fabric and FabIL source
files, is a 14k-line extension to the Jif 3.3 compiler [36], itself a
13k-line extension to the Polyglot compiler framework [39].

Implementing Fabric in Java has the advantage that it supports
integration with and porting of legacy Java applications, and access
to functionality available in Java libraries. However, it limits control
over memory layout and prevents the use of many implementation
techniques. In an ideal implementation, the virtual machine and
JIT would be extended to support Fabric directly. For example, the
Java SoftReference capability that is used for eviction could be
implemented with fewer indirections. We leave VM extensions to
future work.

6.1 Store
The current store implementation uses Berkeley DB [40] as a

backing store in a simple way: each object is entered individually
with its oid as its key and its serialized representation as the corre-
sponding value. Because stores cache both object groups and object
versions in memory, and because workers are able to aggressively
cache objects, the performance of this simple implementation is rea-
sonable for the applications we have studied. For write-intensive
workloads, object clustering at the backing store is likely to improve
performance; we leave this to future work.

It is important for performance to keep the representation of an
object at a store and on the wire compact. Therefore, references
from one object to another are stored as onums rather than as full
oids. A reference to an object located at another Fabric node is
stored as an onum that is bound at that store to the full oid of the
referenced object. This works well assuming most references are to
an object in the same store.

6.2 Dissemination layer
The current dissemination layer is built using FreePastry [47], ex-

tended with proactive popularity-based replication based on Bee-
hive [43] and with propagation of object updates. The popularity-
based replication algorithm replicates objects according to their pop-
ularity, with the aim of achieving a constant expected number of
hops per lookup.

The Fabric dissemination layer also propagates updates to ob-
ject groups. Requests to stores fetch encrypted object groups and

establish subscriptions for those groups. When a store notifies a
dissemination node about an update, that node propagates the up-
date through the dissemination layer, invalidating old versions of
the group.

One standard configuration of Fabric worker nodes includes a
colocated dissemination node to which dissemination layer requests
are directed; with this configuration, the size of the dissemination
layer scales in the number of worker nodes.

6.3 Unimplemented features
Most of the Fabric design described in this paper has been imple-

mented in the current prototype. A few features are not, though no
difficulties are foreseen in implementing them: distributed deadlock
detection via edge chasing [10], timeout-based abort of possibly di-
vergent computations, early detection of inconsistent transactions
based on updates from subscriptions, path compression for pointer
chains created by mobile objects, and avoidance of read channels at
dissemination nodes.

7. Evaluation

7.1 Course Management System
To examine whether Fabric can be used to build real-world pro-

grams, and how its performance compares to common alternatives,
we ported a portion of a course management system (CMS) [6] to
FabIL. CMS is a 54k line J2EE web application written using EJB
2.0 [16], backed by an Oracle database. It has been used for course
management at Cornell University since 2005; at present, it is used
by more than 40 courses and more than 2000 students.

Implementation.
CMS uses the model/view/controller design pattern; the model is

implemented with Enterprise JavaBeans using Bean-Managed Per-
sistence. For performance, hand-written SQL queries are used to
implement lookup and update methods, while generated code man-
ages object caches and database connections. The model contains
35 Bean classes encapsulating students, assignments, courses, and
other abstractions. The view is implemented using Java Server Pages.

We ported CMS to FabIL in two phases. First, we replaced the
Enterprise JavaBean infrastructure with a simple, non-persistent Java
implementation based on the Collections API. We ported the entire
data schema and partially implemented the query functionality of
the model, focusing on the key application features. Of the 35 Bean
classes, 5 have been fully ported. By replacing complex queries
with object-oriented code, we were able to simplify the model code
a great deal: the five fully ported classes were reduced from 3100
lines of code to 740 lines, while keeping the view and controller
mostly unchanged. This intermediate version, which we will call
the Java implementation, took one developer a month to complete
and contains 23k lines of code.

Porting the Java implementation to FabIL required only superfi-
cial changes, such as replacing references to the Java Collections
Framework with references to the corresponding Fabric classes, and
adding label and store annotations. The FabIL version adds fewer
than 50 lines of code to the Java implementation, and differs in fewer
than 400 lines. The port was done in less than two weeks by an un-
dergraduate initially unfamiliar with Fabric. These results suggest
that porting web applications to Fabric is not difficult and results in
shorter, simpler code.

A complete port of CMS to Fabric would have the benefit of fed-
erated, secure sharing of CMS data across different administrative
domains, such as different universities, assuming that information is
assigned labels in a fine-grained way. It would also permit secure

330

Page Latency (ms)
Course Students Update

EJB 305 485 473
Hilda 432 309 431
FabIL 35 91 191
FabIL/memory 35 57 87
Java 19 21 21

Table 1: CMS page load times (ms) under continuous load.

access to CMS data from applications other than CMS. We leave
this to future work.

Performance.
The performance of Fabric was evaluated by comparing five dif-

ferent implementations of CMS: the production CMS system based
on EJB 2.0, the in-memory Java implementation (a best case), the
FabIL implementation, the FabIL implementation running with an
in-memory store (FabIL/memory), and a fifth implementation de-
veloped earlier using the Hilda language [54]. Comparing against
the Hilda implementation is useful because it is the best-performing
prior version of CMS. The performance of each of these systems
was measured on some representative user actions on a course con-
taining 55 students: viewing the course overview page, viewing in-
formation about all students enrolled in the course, and updating the
final grades for all students in the course. All three of these actions
are compute- and data-intensive.

All Fabric and Java results were acquired with the app server on a
2.6GHz single-core Intel Pentium 4 machine with 2GB RAM. The
Hilda and EJB results were acquired on slightly better hardware: the
Hilda machine had the same CPU and 4GB of memory; EJB results
were acquired on the production configuration, a 3GHz dual-core
Intel Xeon with 8GB RAM.

Table 1 shows the median load times for the three user actions un-
der continuous load. The first three measurements in Table 1 show
that the Fabric implementation of CMS runs faster than the previ-
ous implementations of CMS. The comparison between the Java
and nonpersistent FabIL implementations illustrate that much of the
run-time overhead of Fabric comes from transaction management
and from communication with the remote store.

7.2 Multiuser SIF calendar
Fabric labels are intended to enforce the construction of secure

distributed applications, even in an environment of mutual distrust.
To evaluate whether this goal is achieved, we ported the multiuser
calendar application originally written for SIF [13] to Fabric. This
application allows users to create shared events and to control the
visibility of their events using information flow policies.

The application is structured as a standard web application server
running on a Fabric worker node. Persistent data is kept on one
or more storage nodes, but the worker and the stores do not nec-
essarily trust each other. The design allows users to maintain their
calendar events on a store they trust, and application servers can run
on any worker the user trusts. This design is in contrast to current
distributed calendars where all events are maintained on a single
globally trusted domain.

In the SIF version, security is enforced by explicitly labeling ap-
plication data with confidentiality and integrity policies, but persis-
tence is achieved with a MySQL backing store. The Fabric version
straightforwardly removes the use of MySQL by making existing
objects persistent.

The original SIF framework has about 4000 non-comment, non-

total app tx log fetch store
Cold 9153 10% 2% 12% 74% 2%
Warm 6043 27% 3% 6% 61% 3%
Hot 840 46% 14% 24% 0% 17%

Table 2: Breakdown of OO7 traversal time (times in ms)

blank lines of Java code, 1000 lines of Jif signatures, and a 900-
line Jif library that implements user management. The Calendar
application is another 1800 lines of Jif code.

Porting SIF to Fabric required changes only to the User library,
because users are persistent objects. These changes involved refac-
toring so all fields shared the same label, and removing parametric
labels with no run-time representation.

Porting the Calendar application required similar changes. Using
the persistence features of Fabric simplifies its code by eliminating
414 lines of code for encoding objects into MySQL. The application
was distributed by introducing remote calls to perform queries on a
store-colocated worker. Static checks performed by the Fabric com-
piler force the insertion of additional dynamic label and principal
tests, to ensure that persistent object creation and remote calls are
secure.

7.3 Run-time overhead
To evaluate the overhead of Fabric computation at the worker

when compared to ordinary computation on nonpersistent objects,
and to understand the effectiveness of object caching at both the
store and the worker, we used the OO7 object-oriented database
benchmark [8]. We measured the performance of a read-only (T1)
traversal on an OO7 small database, which contains 153k objects
totaling 24Mb.

The results of these measurements are summarized in Table 2.
Performance was measured in three configurations: (1) cold, (2)
warm, with stores caching object groups, and (3) hot, with both the
store and worker caches warmed up.

The results show that caching is effective at both the worker and
the store. However the plain in-memory Java implementation of
OO7 runs in 66ms, which is about 10 times faster than the worker-
side part of the hot traversal. Because Fabric is designed for com-
puting on persistent data, this is an acceptable overhead for many,
though not all, applications. For computations that require lower
overhead, Fabric applications can always incorporate ordinary Java
code, though that code must implement its own failure recovery.

8. Related work
Fabric provides a higher-level abstraction for programming dis-

tributed systems. Because it aims to help with many different issues,
including persistence, consistency, security, and distributed compu-
tation, it overlaps with many systems that address a subset of these
issues. However, none of these prior systems addresses all the issues
tackled by Fabric.

OceanStore [45] shares the goal with Fabric of a federated, dis-
tributed object store. OceanStore is more focused on storage than
on computation. It provides consistency only at the granularity of
single objects, and does not help with consistent distributed com-
putation. OceanStore focuses on achieving durability via replica-
tion. Fabric stores could be replicated but currently are not. Un-
like OceanStore, Fabric provides a principled model for declaring
and enforcing strong security properties in the presence of distrusted
worker and storage nodes.

Prior distributed systems that use language-based security to en-

331

force strong confidentiality and integrity in the presence of distrusted
participating nodes, such as Jif/split [55], SIF [13], Swift [11], and
have had more limited goals. They do not allow new nodes to join
the system, and they do not support consistent, distributed compu-
tations over shared persistent data. They do use program analysis to
control read channels [55], which Fabric does not.

DStar [56] controls information flow in a distributed system using
run-time taint tracking at the OS level, with Flume-style decentral-
ized labels [26]. Like Fabric, DStar is a decentralized system that
allows new nodes to join, but does not require certificate authorities.
DStar has the advantage that it does not require language support,
but controls information flow more coarsely. DStar does not support
consistent distributed computations or data shipping.

Some previous distributed storage systems have used transactions
to implement strong consistency guarantees, including Mneme [32],
Thor [29] and Sinfonia [1]. Cache management in Fabric is in-
spired by that in Thor [9]. Fabric is also related to other systems
that provide transparent access to persistent objects, such as Object-
Store [28] and GemStone [7] These prior systems do not focus on
security enforcement in the presence of distrusted nodes, and do not
support consistent computations spanning multiple compute nodes.

Distributed computation systems with support for consistency,
such as Argus [30] and Avalon [20], usually do not have a single-
system view of persistent data and do not enforce information se-
curity. Emerald [4] gives a single-system view of a universe of
objects while exposing location and mobility, but does not support
transactions, data shipping or secure federation. InterWeave [51]
synthesizes data- and function-shipping in a manner similar to Fab-
ric, and allows multiple remote calls to be bound within a transac-
tion, remaining atomic and isolated with respect to other transac-
tions. However, InterWeave has no support for information secu-
rity. The work of Shrira et al. [49] on exo-leases supports nested
optimistic transactions in a client–server system with disconnected,
multi-client transactions, but does not consider information secu-
rity. MapJAX [37] provides an abstraction for sharing data struc-
tures between the client and server in web applications, but does
not consider security. Other recent language-based abstractions for
distributed computing such as X10 [48] and Live Objects [42] also
raise the abstraction level of distributed computing but do not sup-
port persistence or information flow security.

Some distributed storage systems such as PAST [46], Shark [2],
CFS [15], and Boxwood [31] use distributed data structures to pro-
vide scalable file systems, but offer weak consistency and security
guarantees for distributed computation.

9. Conclusions
We have explored the design and implementation of Fabric, a new

distributed platform for general secure sharing of information and
computation resources. Fabric provides a high-level abstraction for
secure, consistent, distributed general-purpose computations using
distributed, persistent information. Persistent information is con-
veniently presented as language-level objects connected by point-
ers. Fabric exposes security assumptions and policies explicitly and
declaratively. It flexibly supports both data-shipping and function-
shipping styles of computation. Results from implementing com-
plex, realistic systems in Fabric, such as CMS and SIF, suggest it
has the expressive power and performance to be useful in practice.

Fabric led to some technical contributions. Fabric extends the Jif
programming language with new features for distributed program-
ming, while showing how to integrate those features with secure
information flow. This integration requires a new trust ordering on
information flow labels, and new implementation mechanisms such
as writer maps and hierarchical two-phase commit.

While Fabric perhaps goes farther toward the goal of securely
and transparently sharing distributed resources than prior systems,
there are many hard problems left to solve. For example, persis-
tent objects introduce the difficult problem of schema evolution; re-
cent work on object adaptation may help. Also, Fabric does not
guarantee availability in the way that it does confidentiality and in-
tegrity; this remains an interesting topic. The performance of Fabric
is limited by its strong consistency guarantees; a principled way to
weaken these guarantees would also be valuable.

Acknowledgments
Nate Nystrom and Xin Zheng were involved in early stages of the
Fabric project, and Xin started the dissemination layer. Steve Chong
provided guidance on extending Jif and quickly fixed Jif bugs. Dora
Abdullah helped set up experiments. We thank Hakim Weather-
spoon, Aslan Askarov, Barbara Liskov, Nickolai Zeldovich, and es-
pecially Michael Clarkson for discussions on Fabric and this paper.
The SOSP reviewers also gave much helpful feedback.

This work was supported in part by the National Science Founda-
tion under grants 0430161 and 0627649; by a grant from Microsoft
Corporation; by AF-TRUST, which receives support from the DAF
Air Force Office of Scientific Research (FA9550-06-1-0244) and
the NSF (0424422); by NICECAP Grant FA8750-08-2-0079, mon-
itored by Air Force Research Laboratories; and by the Office of
Naval Research under award N000140910652. This work does not
necessarily represent the opinions, expressed or implied, of any of
these sponsors.

10. References
[1] Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair

Veitch, and Christos Karamanolis. Sinfonia: a new paradigm
for building scalable distributed systems. In Proc. 21st ACM
Symp. on Operating System Principles (SOSP), pages
159–174, October 2007.

[2] Siddhartha Annapureddy, Michael J. Freedman, and David
Mazières. Shark: Scaling file servers via cooperative caching.
In Proc. 2nd USENIX/ACM Symposium on Networked
Systems Design and Implementation (NSDI), Boston, MA,
May 2005.

[3] M. Atkinson et al. The object-oriented database manifesto. In
Proc. International Conference on Deductive Object Oriented
Databases, Kyoto, Japan, December 1989.

[4] Andrew Black, Norman Hutchinson, Eric Jul, and Henry
Levy. Object structure in the Emerald system. In Proc. 1st
ACM Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), pages 78–86,
November 1986.

[5] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer,
Michael Champion, Chris Ferris, and David Orchard. Web
services architecture.
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/,
2004.

[6] Chavdar Botev et al. Supporting workflow in a course
management system. In Proc. 36th ACM Technical
Symposium on Computer Science Education (SIGCSE), pages
262–266, February 2005.

[7] Paul Butterworth, Allen Otis, and Jacob Stein. The GemStone
Object Database Management System. Comm. of the ACM,
34(10):64–77, October 1991.

[8] M. J. Carey, D. J. DeWitt, and J. F. Naughton. The OO7
Benchmark. In Proc. ACM SIGMOD International
Conference on Management of Data, pages 12–21,
Washington D.C., May 1993.

[9] M. Castro, A. Adya, B. Liskov, and A. C. Myers. HAC:
Hybrid Adaptive Caching for Distributed Storage Systems. In
Proc. 17th ACM Symp. on Operating System Principles
(SOSP), pages 102–115, St. Malo, France, October 1997.

332

[10] K. Mani Chandy, J. Misra, and Laura M. Haas. Distributed
deadlock detection. ACM Transactions on Computer Systems,
1(2), 1983.

[11] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi,
K. Vikram, Lantian Zheng, and Xin Zheng. Secure web
applications via automatic partitioning. In Proc. 21st ACM
Symp. on Operating System Principles (SOSP), October 2007.

[12] Stephen Chong and Andrew C. Myers. Decentralized
robustness. In Proc. 19th IEEE Computer Security
Foundations Workshop, pages 242–253, July 2006.

[13] Stephen Chong, K. Vikram, and Andrew C. Myers. SIF:
Enforcing confidentiality and integrity in web applications. In
Proc. 16th USENIX Security Symposium, August 2007.

[14] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers.
Civitas: Toward a secure voting system. In Proc. IEEE
Symposium on Security and Privacy, pages 354–368, May
2008.

[15] Frank Dabek, M. Frans Kaashoek, David Karger, Robert
Morris, and Ion Stoica. Wide-area cooperative storage with
CFS. In Proc. 18th ACM Symp. on Operating Systems
Principles (SOSP), October 2001.

[16] Linda G. DeMichiel. Enterprise JavaBeans Specifications,
Version 2.1. Sun Microsystems.

[17] Dorothy E. Denning and Peter J. Denning. Certification of
programs for secure information flow. Comm. of the ACM,
20(7):504–513, July 1977.

[18] J. B. Dennis and E. C. VanHorn. Programming semantics for
multiprogrammed computations. Comm. of the ACM,
9(3):143–155, March 1966.

[19] P. Druschel and A. Rowstron. Past: A large-scale, persistent
peer-to-peer storage utility. In In Proc. IEEE Workshop on
Hot Topics in Operating Systems, Schoss Elmau, Germany,
May 2001.

[20] M. Herlihy and J. Wing. Avalon: Language support for
reliable distributed systems. In Proc. 17th International
Symposium on Fault-Tolerant Computing, pages 89–94.
IEEE, July 1987.

[21] Boniface Hicks, Kiyan Ahmadizadeh, and Patrick McDaniel.
Understanding practical application development in
security-typed languages. In 22nd Annual Computer Security
Applications Conference (ACSAC), December 2006.

[22] Health insurance portability and privacy act of 1996. Public
Law 104–191, 1996.

[23] R. Housley, W. Polk, W. Ford, and D. Solo. Internet X.509
public key infrastructure certificate and certificate revocation
list (CRL) profile. Internet RFC-3280, April 2002.

[24] JavaSoft. Java Remote Method Invocation .
http://java.sun.com/products/jdk/rmi, 1999.

[25] Linda T. Kohn, Janet M. Corrigan, and Molla S. Donaldson,
editors. To Err is Human: Building a Safer Health System.
The National Academies Press, Washington, D.C., April
2000.

[26] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan
Cliffer, M. Frans Kaashoek, Eddie Kohler, and Robert Morris.
Information flow control for standard OS abstractions. In
Proc. 21st ACM Symp. on Operating System Principles
(SOSP), 2007.

[27] John Kubiatowicz, David Bindel, Yan Chen, Steven
Czerwinski, Patrick Eaton, Dennis Geels, Ramakrishna
Gummadi, Sean Rhea, Hakim Weatherspoon, Westley
Weimer, Chris Wells, and Ben Zhao. OceanStore: An
architecture for global-scale persistent storage. In Proc. 9th
international Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
2000), November 2000.

[28] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The
ObjectStore Database System. Comm. of the ACM,
34(10):50–63, October 1991.

[29] B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat,
R. Gruber, U. Maheshwari, A. C. Myers, and L. Shrira. Safe
and Efficient Sharing of Persistent Objects in Thor. In Proc.

ACM SIGMOD International Conference on Management of
Data, pages 318–329, Montreal, Canada, June 1996.

[30] Barbara H. Liskov. The Argus language and system. In
Distributed Systems: Methods and Tools for Specification,
volume 150 of Lecture Notes in Computer Science, pages
343–430. Springer-Verlag Berlin, 1985.

[31] John MacCormick, Nick Murph, Marc Najor,
Chandramohan A. Thekkat, and Lidong Zhou. Boxwood:
Abstractions as the foundation for storage infrastructure. In
Proc. USENIX Symp. on Operating Systems Design and
Implementation (OSDI), December 2004.

[32] J. E. B. Moss. Design of the Mneme Persistent Object Store.
ACM Transactions on Office Information Systems,
8(2):103–139, March 1990.

[33] Andrew C. Myers. JFlow: Practical mostly-static information
flow control. In Proc. 26th ACM Symp. on Principles of
Programming Languages (POPL), pages 228–241, January
1999.

[34] Andrew C. Myers. Mostly-static decentralized information
flow control. Technical Report MIT/LCS/TR-783,
Massachusetts Institute of Technology, Cambridge, MA,
January 1999. Ph.D. thesis.

[35] Andrew C. Myers and Barbara Liskov. Protecting privacy
using the decentralized label model. ACM Transactions on
Software Engineering and Methodology, 9(4):410–442,
October 2000.

[36] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen
Chong, and Nathaniel Nystrom. Jif 3.0: Java information
flow. Software release, http://www.cs.cornell.edu/jif,
July 2006.

[37] Daniel Myers, Jennifer Carlisle, James Cowling, and Barbara
Liskov. Mapjax: Data structure abstractions for asynchronous
web applications. In Proc. 2007 USENIX Annual Technical
Conference, Santa Clara, CA, June 2007.

[38] George C. Necula and Peter Lee. The design and
implementation of a certifying compiler. In Proc. SIGPLAN
1998 Conference on Programming Language Design and
Implementation, pages 333–344, 1998.

[39] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C.
Myers. Polyglot: An extensible compiler framework for Java.
In Proc. 12th International Compiler Construction
Conference (CC’03), pages 138–152, April 2003. LNCS
2622.

[40] Michael A. Olson, Keith Bostic, and Margo Seltzer. Berkeley
DB. In Proc. USENIX Annual Technical Conference, 1999.

[41] OMG. The Common Object Request Broker: Architecture and
Specification, December 1991. OMG TC Document Number
91.12.1, Revision 1.1.

[42] Krzysztof Ostrowski, Ken Birman, Danny Dolev, and
Jong Hoon Ahnn. Programming with live distributed objects.
In Proc. 22nd European Conference on Object-Oriented
Programming (ECOOP), 2008.

[43] Venugopalan Ramasubramanian and Emin Gün Sirer.
Beehive: O(1) lookup performance for power-law query
distributions in peer-to-peer overlays. In USENIX Symposium
on Networked Systems Design and Implementation (NSDI),
March 2004.

[44] Sean Rhea, Brighten Dodfrey, Brad Karp, John Kubiatowicz,
Sylvia Ratnasamy, Scott Shenker, Ion Stoica, and Harlan Yu.
OpenDHT: A public DHT service and its uses. In
Proceedings of ACM SIGCOMM ’05 Symposium, 2005.

[45] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim
Weatherspoon, Ben Zhao, and John Kubiatowicz. Pond: the
OceanStore prototype. In 2nd USENIX Conference on File
and Storage Technologies, pages 1–14, 2003.

[46] A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer storage
utility. In Proc. 18th ACM Symp. on Operating System
Principles (SOSP), October 2001.

[47] Antony Rowstron and Peter Druschel. Pastry: Scalable,
distributed object location and routing for large-scale

333

peer-to-peer systems. In IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), pages
329–350, November 2001.

[48] Vijay A. Saraswat, Vivek Sarkar, and Christoph von Praun.
X10: concurrent programming for modern architectures. In
Proc. 12th ACM Symposium on Principles and Practice of
Parallel Programming (PPoPP), 2007.

[49] Liuba Shrira, Hong Tian, and Doug Terry. Exo-leasing:
Escrow synchronization for mobile clients of commodity
storage servers. In Proc. ACM/IFIP/Usenix International
Middleware Conference (Middleware 2008), December 2008.

[50] Sun Microsystems. Java Language Specification, version 1.0
beta edition, October 1995. Available at
ftp://ftp.javasoft.com/docs/javaspec.ps.zip.

[51] Chunqiang Tang, DeQing Chen, Sandhya Dwarjadas, and
Michael L. Scott. Integrating remote invocation and
distributed shared state. In Proc. 18th International Parallel
and Distributed Processing Symposium, April 2004.

[52] W3C. SOAP version 1.2, June 2003. W3C Recommendation,
at http://www.w3.org/TR/soap12.

[53] Dan S. Wallach and Edward W. Felten. Understanding Java
stack inspection. In Proc. IEEE Symposium on Security and
Privacy, pages 52–63, Oakland, California, USA, May 1998.

[54] Fan Yang, Nitin Gupta, Nicholas Gerner, Xin Qi, Alan
Demers, Johannes Gehrke, and Jayavel Shanmugasundaram.
A unified platform for data driven web applictions with
automatic client-server partitioning. In Proc. 16th
International World Wide Web Conference (WWW’07), pages
341–350, 2007.

[55] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and
Andrew C. Myers. Secure program partitioning. ACM
Transactions on Computer Systems, 20(3):283–328, August
2002.

[56] Nickolai Zeldovich, Silas Boyd, and David Mazières.
Securing distributed systems with information flow control. In
Proc. 5th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 293–308, 2008.

[57] Lantian Zheng, Stephen Chong, Andrew C. Myers, and Steve
Zdancewic. Using replication and partitioning to build secure
distributed systems. In Proc. IEEE Symposium on Security
and Privacy, pages 236–250, Oakland, California, May 2003.

334

