
Flow-Limited Authorization: Technical Report

Owen Arden Jed Liu Andrew C. Myers
Department of Computer Science

Cornell University
{owen,liujed,andru}@cs.cornell.edu

Abstract

Because information flow control mechanisms often rely on an underlying authorization mechanism,
their security guarantees can be subverted by weaknesses in authorization. Conversely, the security of
authorization can be subverted by information flows that leak information or that influence how authority
is delegated between principals. We argue that interactions between information flow and authorization
create security vulnerabilities that have not been fully identified or addressed in prior work. We ex-
plore how the security of decentralized information flow control (DIFC) is affected by three aspects
of its underlying authorization mechanism: first, delegation of authority between principals; second,
revocation of previously delegated authority; third, information flows created by the authorization mech-
anisms themselves. It is no surprise that revocation poses challenges, but we show that even delegation
is problematic because it enables unauthorized downgrading. Our solution is a new security model, the
Flow-Limited Authorization Model (FLAM), which offers a new, integrated approach to authorization
and information flow control. FLAM ensures robust authorization, a novel security condition for autho-
rization queries that ensures attackers cannot influence authorization decisions or learn confidential trust
relationships. We discuss our prototype implementation and its algorithm for proof search.

1 Introduction

Authorization mechanisms are essential to enforcing security. However, authorization alone is not enough.
First, authorization can be subverted and exploited by an adversary that can influence the delegation of au-
thority among principals. Second, queries performed as part of an authorization check can leak confidential
information. These weaknesses are examples of insecure information flows.

Conversely, information flow control is an appealing approach to building secure systems. It enables
the expression of high-level information security policies describing the end-to-end behavior of the system.
These policies are inherently compositional. Further, they can be formally characterized in terms of semantic
security conditions such as noninterference [1], permitting rigorous proofs that enforcement mechanisms
enforce policies as intended.

While control of information flow is crucial to security, it too is not enough. In particular, real systems
need to be able to control the release of confidential information, but also to release that information under
suitable conditions. Controlled release of information, such as through downgrading of information flow
labels, is a violation of noninterference.

Decentralized information flow control (DIFC) [2] introduced the idea that information flow control
mechanisms could control the use of downgrading mechanisms through an authorization mechanism. In
a DIFC system, information flow labels are therefore expressed using the vocabulary of the authorization
mechanism. For example, the original Decentralized Label Model (DLM) [2] expresses labels in terms of

1

principals, and delegations between principals (expressing the trust between those principals) affect which
information flows are permitted. Subsequent DIFC systems use labels expressed in terms of tags combined
with capabilities [3–6], or tags combined with principals [7].

Building on an underlying authorization mechanism adds power and expressiveness to DIFC. However,
prior work has not fully explored the interactions between information flow and authorization, especially
in systems in which trust can change. We refer to the collection of all delegations among principals as the
system’s trust configuration. In real systems, it is important that this trust configuration be able to change
by adding or removing delegations, but we show that these changes can lead to security vulnerabilities:

• Delegations of authority can enable information relabeling equivalent to unauthorized downgrading.

• Relabeling information limits a principal’s ability to revoke access to that information.

• Changes to the trust configuration may leak information from the agent performing the change.

• Dynamic authorization queries may leak information from the querying computation.

All but the most limited existing DIFC and decentralized authorization models are susceptible to at least
some of these security vulnerabilities, including several systems [8–14] designed to handle changes in trust
securely. To address these vulnerabilities, we introduce a new DIFC approach that we call flow-limited
authorization, embodied in the Flow-Limited Authorization Model (FLAM).

Rather than taking the trust configuration as a constant, FLAM explicitly models how information flows
both through updates to the trust configuration and through the authorization mechanism itself. Our approach
avoids previous restrictions [12] on trust relationships and enables fully decentralized trust in the sense
that each principal’s view of the trust configuration is represented and all principals’ policies are enforced
simultaneously.

This work makes several contributions:

• We identify new security vulnerabilities that arise from the interactions of authorization and informa-
tion flow, and that are not handled satisfactorily by previous mechanisms and models. (Section 2).

• We define a new principal algebra that unifies principals with information flow labels, providing
a clean, abstract vocabulary for exploring interactions between authorization and information flow.
(Section 3).

• We provide a novel logic for making both authorization and information flow decisions securely while
avoiding the newly identified vulnerabilities (Section 4)

• To characterize the interaction of authorization and information flow, we introduce robust autho-
rization, a security condition that applies when delegations and revocations change the meaning of
information flow policies (Section 5).

• We give a proof search algorithm for securely and efficiently processing FLAM queries (Section 6) in
accordance with the logic.

• We also show that FLAM can be embedded in a programming language that supports trust manage-
ment (Section 7), as well as apply our FLAM implementation to the ARBAC97 [15] role-based access
control model.

2

Bob

Emp

Rival

4

(a) Trust (<) inH

Acme→Bob

Acme→Emp

Acme→Rival

v

(b) Flow ordering (v) of policies inH

Figure 1: Delegation loophole: By delegating to Rival, Bob effectively declassifies a label owned by Acme. Dashed
lines indicate relationships influenced by Bob.

2 Motivating examples

Delegation and revocation of trust are important features of DIFC, but previous approaches fall short with
respect to both their expressiveness and the security guarantees they offer. We now demonstrate three classes
of vulnerabilities that arise in DIFC systems.

We motivate flow-limited authorization primarily in the context of the DLM. However, the vulnerabili-
ties discussed in this section are generally applicable to other DIFC and authorization models, as we discuss
in Section 8.

2.1 Delegation loopholes

Delegation of trust allows principals in a system to specify other principals that may act on their behalf.
In addition to representing trust between two entities, delegation may encode membership in groups or
roles represented by principals. Most previous models treat delegations as universally agreed-upon, but in
a decentralized system, different principals can have different opinions about delegations. Most previous
information flow models, including the DLM, ignore the implications of allowing the trust configuration
to be controlled by partially trusted principals. As we show, a partially trusted principal can choose to
delegate to an untrusted principal, and thereby achieve the effect of downgrading information even when it
has not been granted the authority to downgrade. We call this use of delegation to achieve downgrading the
delegation loophole. Some previous work [10, 12, 14] does observe this connection between delegation and
downgrading, but does not eliminate the influence attackers may exert on which flows are authorized.

To see how the delegation loophole works, consider the following example of an insider attack. Bob,
who works for Acme, has been enticed to disclose valuable trade secrets to Rival, one of Acme’s competi-
tors. Acme’s policies1 are written in terms of principals using the DLM [2]. In the DLM, principals like Emp
can express membership of a group by delegating to other principals using the acts-for relation<, where we
read the expression p < q as “p acts for q”. Thus, the DLM trust configuration consists of a set of delega-
tions of the form p < q, called the principal hierarchy. In several DIFC systems [2, 7, 16], confidentiality
and integrity policies have an associated owner principal, expressing the authority necessary to enforce or
downgrade the label. In the DLM, Acme’s trade secrets might be protected under the label component
Acme → Emp, which is owned by Acme. The label ensures that trade secrets should be readable only by
employees of Acme, to whom the principal Emp delegates. These would include Bob since Bob < Emp.

The idea of the DLM is that only Acme itself should be able to release data labeled Acme → Emp,
because Acme is the owner of the policy. However, if an employee like Bob is able to control his own
delegations, he can effectively release information to a third party. For instance, Figure 1 shows how Bob

1We use the word “policy” here to mean a component of an information flow label governing the use of the labeled data, rather
than a global system property such as noninterference.

3

Acme→Emp

Acme→Bob

client

poach
Assignment:

poach := client

Revocable by Emp
Not revocable by Emp

Figure 2: Poaching attack: If information at Acme→Emp is relabeled to a more restrictive policy, Emp can no longer
revoke access.

might abuse his access to Acme’s trade secrets. Figure 1a shows a trust configuration H comprising two
delegations: Bob < Emp, and Rival < Bob. An edge indicates that the higher principal is trusted to act on
behalf of the lower principal; the dashed line indicates that Bob has delegated trust to Rival.

Figure 1b shows the restrictiveness of information flow policies inH. An edge indicates that the higher
policy is at least as restrictive as the lower policy, or in other words, information with the lower policy may
be relabeled to the higher policy. Bob’s delegation causes Acme to believe it is safe to relabel information
from the policy Acme→ Emp to the policy Acme→ Rival since Bob is trusted by Emp and Rival is trusted
by Bob. This influence of Bob causes Acme’s own system to disclose sensitive data to Rival.

Although the DLM allows the trust configuration to evolve by adding or removing delegations, it ignores
the possibility that changes to the trust configuration may create insecure information flows, However, recent
systems built on the DLM, such as SIF [17] and Fabric [18], give principals the power to control their
delegations dynamically. These systems have therefore opened up the delegation loophole.

Surprisingly, though Bob uses delegation to cause the disclosure, the real weakness lies in how informa-
tion is relabeled. Relabeling information upward in the lattice of information flow labels has heretofore been
considered a safe operation requiring no privilege. This example shows that when such relabeling is justified
based on a principal hierarchy, it is actually a kind of downgrading operation that must be controlled.

2.2 Poaching attacks

The presence of revocation in a DIFC system raises two challenging questions: when should revocation take
effect, and what are the consequences for information flow? Answers to the first question are complicated in
distributed environments where revocation messages may not be immediately disseminated. Programs with
an inconsistent view of current trust relationships may make insecure authorizations.

Existing DIFC systems have particularly unsatisfying semantics with regard to the consequences of
revocation. The root of the problem is that current DIFC systems permit information to flow between
different policies without regard to a principal’s ability to revoke access in the future. This makes it difficult
to reason about what information a principal retains access to after a revocation.

Suppose Acme protects its client list with the policy Acme → Emp so that only employees may read
it. Figure 2 illustrates how Bob can use his access to Emp data to “poach” Acme’s client list, storing it
with a more restrictive policy, to which he retains access in the event of a revocation. The white region
beneath Acme → Emp represents the part of the lattice of information flow policies in which information
can be relabeled to Acme → Emp. The shaded region represents information with policies that relabel to
Acme → Bob, but not to Acme → Emp. The assignment poach:=client assigns the contents of variable
client protected by a policy in the white region to variable poach protected by a policy in the shaded
region. Since Emp delegates to Bob, policies in the white region may be relabeled to Acme→ Bob.

4

However, relabeling information from Acme → Emp to Acme → Bob has consequences. Whereas Emp
may revoke Bob’s access to information in the white region by revoking its delegation to Bob, it cannot
revoke Bob’s access to information in the shaded region. Therefore, if Bob can influence what information
is relabeled, he can prevent Emp from ever revoking access (for instance, if Bob is fired).

Like the delegation loophole, poaching attacks demonstrate that relabeling is a kind of policy downgrade
exploitable by an insider. However, the two vulnerabilities differ. Delegation enables future relabelings to
occur; therefore, to eliminate loopholes, relabelings must only be based on trusted delegations. On the other
hand, relabeling prevents future revocations from occurring; therefore, to prevent poaching, the decision to
relabel a policy should be trusted by the policy owner.

2.3 Leaking information via authorization

DIFC uses authorization decisions to decide which information flows are permitted. However, the autho-
rization process has the potential to leak confidential information in two distinct ways.

The first source of leakage is a side channel in the authorization process. No single entity in a distributed
system has a complete view of the current system state, which includes the trust configuration. Consequently,
to make authorization decisions in a decentralized way, entities must query the current trust configuration,
leading to communication. This communication may leak information to untrusted agents about what the
querying process is doing or about the data it is using. For example, suppose a certain query is made only if
a secret value is true; in other words, it occurs in a secret context. In this case, it would be insecure to query
an entity not trusted to learn the secret information.

This side channel is an instance of a read channel [19], in which accesses to data leak information
about the accessor. Read channels arising from authorization queries have been largely ignored in the DIFC
literature, perhaps because the implementation platform was originally assumed to be trusted. In a fully
distributed system, however, different parts of the computing infrastructure, including the implementation
of the trust configuration, will in general be provided by differently trusted principals. The Fabric system
therefore adds access labels [20] to control information flows via read channels. However, Fabric does not
consider read channels arising from authorization requests.

The second source of information leakage via authorization arises if a public decision is based on the
result of an authorization query whose answer depends on a secret trust relationship. Several distributed
authorization systems [8, 9, 11, 13, 21–23] protect sensitive credentials with access policies, but do not con-
strain how credentials are used after granting access, resulting in possible leaks. These systems do not guard
against authorization side channels.

A central challenge of distributed, decentralized authorization is that an entity’s limited view of the trust
configuration constrains its ability to securely process authorization queries. Any general approach must
provide a way to bootstrap knowledge of the distributed trust configuration from local knowledge while
avoiding communication that could leak information. To bootstrap this knowledge securely, we need a
tighter coupling between authorization and information flow control than has been previously recognized.

2.4 Vulnerabilities in other DIFC systems

Almost all previous DIFC systems have some degree of vulnerability to the attacks described, which abuse
the way authorization controls information flow. Clearly, systems based on the DLM, such as Jif [24]
and Fabric [18], have these weaknesses. Capability-based DIFC systems such as Asbestos [3], Histar [4],
Flume [5], and Laminar [6] also exhibit delegation loopholes and poaching attacks since processes may

5

transfer capabilities and relabel information. Aeolus [7] has some characteristics of capability-based sys-
tems, but maintains a trust configuration like Fabric. It too is vulnerable to these attacks.

3 Unifying principals and policies

Our goal is a simple model that supports reasoning about authorization, about information flow, and about
their interactions, and that guides the construction of secure distributed systems. Our model, which we call
the Flow-Limited Authorization Model (FLAM), addresses all the security issues discussed in Section 2.
FLAM is both an authorization logic and an information flow model. It is an authorization logic (like
[25–27]) since it derives judgments about trust. It is an information flow model (like [2, 12, 28]) since it
derives judgments about secure information flow. FLAM integrates reasoning about trust and reasoning
about information flow; this integration is central to preventing the security vulnerabilities identified in
Section 2. We are unaware of prior models that support this kind of combined reasoning.

For simplicity, FLAM completely unifies principals, roles, privileges, and information flow labels, a
perhaps surprising feature that distinguishes FLAM from previous models for either authorization or infor-
mation flow2. In FLAM, principals are both authorization entities and information flow policies enforcing
confidentiality and integrity. In subsequent discussion, we sometimes use label (or policy) to talk about a
principal used to specify permitted information flow, but these concepts are interchangeable in FLAM. As
we show, unifying principals with information flow labels enables a simpler, algebraic presentation of the
relationships between information flow policies and the principals they concern.

This section provides the formal basis for unifying authority and decentralized information flow policies.
Although the algebraic definitions given in this section may appear complex at first, we show in Section 4
that they enable a concise logic, collected in Figures 5 and 6. Authorization decisions derived from this
logic are protected from the problems discussed in Section 2.

3.1 Authority projections

All entities in a system are represented as principals that may delegate to each other. FLAM provides a
particularly rich set of principals. We construct this set of principals by defining operations on principals
that combine or attenuate principals in different ways.

Let N be the set of all primitive principals, which are essentially uninterpreted names. Starting from
primitive principals, we can construct more complex compound principals. For any two principals p and
q, we represent the conjunction of their authority, the authority of both p and q, as the compound principal
p ∧ q. Likewise, the authority of either p or q is written p ∨ q. These conjunction and disjunction operators,
as in Boolean algebra, define a lattice3 over principals. If a principal q trusts principal p, then we say p acts
for q and write p < q. If q represents the privilege or permission to perform an action, the statement p < q
means p has the right to perform that action. Lattice properties imply p ∧ q < p < p ∨ q for any p and q.

Conjunction and disjunction are already familiar from previous logics for authentication and authoriza-
tion, and the acts-for relation of FLAM is related to the speaks-for relation of authentication logics [25,27],
but Section 4.4 draws a distinction between the speaks-for relation for FLAM and the acts-for relation.

2Some prior work has unified roles with information flow labels, while distinguishing principals from roles [12, 14, 29].
3Authorization logics typically treat > as the least trusted principal and use the symbol ∧ to represent conjunctive principals,

which denote lattice meets. DIFC models often use> to represent the most trusted principal, yet retain the∧ notation for conjunctive
principals even though they correspond to lattice joins. We find treating conjunctions of authority as “higher” to be intuitive, and
adopt the DIFC approach.

6

In many DIFC models, the flows-to ordering v between information flow policies derives from an
ordering on principals that is similar to<. Rather than defining a separate space of information flow policies,
we characterize confidentiality and integrity as a limited form of authority. For a principal p, let p→ represent
its read authority, and p← represent its write authority. Separating these components of p’s authority allows
us to think of information flow policies as delegations by one or both of these attenuated principals. For
instance, delegating authority p→ to q grants q read-only access to p’s data.

FLAM generalizes this idea of attenuating a principal’s authority by defining operations called authority
projections, which allow new attenuated principals to be constructed from existing principals. In FLAM, we
represent p’s read authority (p→) and its write authority (p←) as projections.

Definition 1 (Authority projections). An authority projection, π, is an operation on principals such that for
any principal p, pπ is a principal, and

1. p < pπ

2. p < q =⇒ pπ < qπ

3. pπ ∧ qπ = (p ∧ q)π

4. pπ ∨ qπ = (p ∨ q)π

5. (pπ)π = pπ

These five properties capture the essence of limited authority derived from a principal’s general authority,
without requiring separate classes of entities such as roles [30], subprincipals, or groups [26]. Naturally,
the originating principal acts for the derived authority (1), and projection preserves the properties of the
authorization lattice (2, 3, 4). Finally, projections are idempotent (5).

FLAM defines two classes of authority projections, basis projections and ownership projections. Basis
projections define the different kinds of authority a principal may possess, i.e., confidentiality and integrity,
whereas ownership projections (discussed in Section 3.3) attenuate a principal’s authority relative to other
principals.

For the purpose of this paper, all authority is representable as a combination of confidentiality and
integrity authority. In other words, the conjunctive principal p→∧ p← has authority equivalent to p, meaning
that confidentiality and integrity projections form a kind of basis for authority.

Definition 2 (Confidentiality and integrity basis). Let→ and← be authority projections such that, for all
principals

1. p = p→ ∧ p←

2. (p←)→ = (p→)← = ⊥

3. p→ ∨ q← = ⊥

We represent all authority as a combination of confidentiality and integrity authority (1), so any principal
that acts for both projections of a principal also acts for the principal. Additionally, composing (2) or taking
the meet (3) of confidentiality and integrity projections yields ⊥. In this paper, we focus on information
flow policies for confidentiality and integrity, but we expect it is possible to extend FLAM with additional
projections that represent other aspects of security. For instance, [31] adds availability policies, and [32] in-
cludes reference authority and persistence policies. We leave representing such policies as basis projections
to future work.

7

Integrity

Con
fide

nti
ali

ty

p

p→p←

(p:q)←(p:q)→

>

⊥

>← >→
p:q

In
cr

ea
si

ng
au

th
or

ity
(4
,∧
,∨

)

Secure information flow (v,t,u)

Figure 3: The FLAM lattices for trust and information flow

Using the above operations, we can extend the set of primitive principals to create a richer set of prin-
cipals ordered by <. Let P0 be the closure of N under the operations ∧ and ∨, and the projections← and
→. We can construct a lattice from the preorder < in the usual way, by defining an equivalence relation
a ≡< b ⇐⇒ (a < b and b < a) and grouping equivalent principals into a single lattice element repre-
senting an equivalence class. Then P0 induces a lattice (P0,<) where we define > and ⊥ as distinguished
principals with highest and lowest authority, respectively. Joins in P0 are the conjunctions of principals (∧),
and meets are disjunctions (∨).

3.2 The information flow ordering

The value of authority projections is that they allow secure information flow to be represented as authority
relationships in a simple and natural way. In fact, there is no explicit need for a separate lattice of information
flow policies; we could express information flow entirely by authority relationships. It is often convenient,
however, to have notation for the authority ordering on principals as well as the information flow ordering on
principals. Below, we define an information flow lattice whose ordering and operations are syntactic sugar
for authority relationships and operations in the authority lattice.

For principals p and q, we say p flows to q, written p v q, if p acts for q’s integrity (q trusts information
from p) and q acts for p’s confidentiality (p trusts q to protect p’s secrets). In the definition below, these
relationships are represented simultaneously by conjunctions of authority projections.

Definition 3 (Secure information flow as authorization).

p v q 4⇐⇒ q→∧ p← < p→∧ q←

p t q 4⇐⇒ (p ∧ q)→ ∧ (p ∨ q)←

p u q 4⇐⇒ (p ∨ q)→ ∧ (p ∧ q)←

The flows-to relation v is a preorder, so we can lift it to a partial order just as we did for acts-for, with
equivalences defined by a ≡v b ⇐⇒ (a v b and b v a). The relation v induces an information flow
lattice (P0,v). In this lattice, we represent joins by t and meets by u. The top element of (P0,v) is the

8

policy that most restricts use of the information, secret and untrusted: >→ ∧⊥←. The bottom element is the
least restrictive policy, public and trusted: ⊥→ ∧>←. We often omit projections of the ⊥ principal to obtain
the more concise (but equivalent) principal representation; e.g., p→ instead of p→ ∧ ⊥← and p← instead of
⊥→ ∧ p←.

By the definitions above, the equivalence classes of < and v are identical, and there is a one-to-one
correspondence between the elements of (P0,<) and (P0,v), even though the two orderings are “at right
angles” to each other. Figure 3 illustrates this correspondence by aligning both lattices on the same set of
elements. Secure information flow is from left to right, toward increasing confidentiality and decreasing
integrity. The trust ordering is bottom to top, toward increasing authority. This correspondence allows us to
easily translate relationships from one ordering to another when convenient.

3.3 Owned principals

To give FLAM the expressive power of some previous authorization systems, such as role-based access con-
trol (RBAC) [30] and the DLM [2], we introduce another way to construct principals. In RBAC, principals
are assigned roles which they may select when performing sensitive tasks, and access control policies are
specified in terms of roles that are permitted access. It is tempting to use delegation to express authorization
concepts such as roles and groups [26]. However, this approach fails to adequately control modification of
role membership. For instance, if Acme uses the principal Emp to represent a role by delegating to all Acme
employees, then Bob can effectively add employees via delegation. What Acme requires is a way to refer
to principals like Bob while retaining control over their trust relationships. Then a principal like Emp can
delegate to such a principal without risking subversion of its authorization mechanism.

From the perspective of information flow control, the principals from the set P0 can represent both
authority and information flow policies, but the information flow policies expressible with these principals
are rather limited—they are not decentralized in the sense of the DLM [2]. The key aspect of decentralized
policies is that policy owners retain control over decisions to release information.

In FLAM, we express ownership as a special class of authority projections called ownership projec-
tions. The owned principal Acme:Bob represents4 Bob as a principal whose trust relationships Acme retains
control of. Intuitively, Acme:Bob delegates trust to the same principals as Bob, but only if Acme allows
the delegation. Acme may also create new delegations of trust from Acme:Bob even though Acme doesn’t
act for Bob. Owned principals are similar in spirit to roles [30], groups, and subprincipals [26], but are
first-class principals that may delegate and be delegated to.

Owned principals are useful for representing decentralized information flow policies. For instance, the
principal (p:q)→ is a confidentiality projection of the ownership projection p:q. This principal represents a
confidentiality policy owned by p that specifies q as a reader, and is similar to the DLM policy p → q. In
the DLM, p→ q v r → s if and only if r < p and s < q. FLAM permits finer-grained delegations of trust,
so the relationship (p:q)→ v (r:s)→ holds, for example, if r:s < p:q but also if r < p and s→ < q→.

Definition 4 formalizes the properties of ownership that unify decentralized policies with principal au-
thority.

Definition 4 (Ownership projection). For each principal p let :p be a distinguished authority projection, an
ownership projection. We say p:q is an owned principal and p is the owner of p:q. Owned principals satisfy
the following properties:

1. p < r and q < s =⇒ p:q < r:s

4For better readability and to resemble DLM notation, we abuse the syntax of authority projections and write p:q instead of p:q .

9

2. p < r and q < r:s =⇒ p:q < r:s

3. p:p = p

4. p:⊥ = ⊥

5. p:r ∧ p:s = p:(r ∧ s)

6. p:r ∨ p:s = p:(r ∨ s)

7. p:qπ = (p:q)π for π ∈ {←,→}

8. pπ:q = (p:q)π for π ∈ {←,→}

The principal p:q is a principal that represents q but that p, the owner, retains control over. Specifically,
since :q is an authority projection, p acts for p:q. Principal p:q reflects the delegations of both p and q,
so owned principals are similar to disjunctive principals, but are not commutative: p:q 6= q:p. Property
(1) permits a delegation between unowned principals (q < s) to induce one between corresponding owned
principals (p:q < r:s), but only if the owners also have an acts-for relationship (p < r). This condition
on owners is central to the idea of ownership since it prevents a delegation to an owned principal p:q from
implying a delegation to the corresponding unowned principal q. Similarly, property (2) ensures a delegation
from an owned principal r:s to an unowned principal q induces a similar delegation to a corresponding
owned principal p:q, but only if the owners have an acts-for relationship (p < r).

An ownership projection :p is the identity when applied to the principal p that defines it (3), and applying
the bottom ownership projection :⊥ always yields ⊥ (4). Finally, conjunction and disjunction distribute
through ownership (5, 6), and confidentiality and integrity projections are associative with and commute
with ownership projections (7, 8).

Using ownership projections, we can further extend our set of principals. LetO = {:p | p ∈ P0} be a set
of ownership projections. Then let P be the closure of P0 under the projections in O. Like P0, the equiv-
alence classes of P form lattices (P,<) and (P,v), whose elements have a one-to-one correspondence.
Figure 3 relates an owned principal, p:q and its projections, to the other elements of these lattices. For the
remainder of this paper, principals are implicitly members of the set P unless otherwise specified.

3.4 FLAM normal form

Constructing efficient algorithms for manipulating elements of an algebraic system such as FLAM is much
easier when the elements have a normal form. A normal form for FLAM principals can be obtained from
the equational rules and lattice properties already stated. Using these rules, any FLAM principal can be
factored into the join of a confidentiality projection and an integrity projection p→ ∧ q←, where p and q are
each a join of meets of owned or primitive principals.

Definition 5. A FLAM principal p is in normal form if it is accepted by the following grammar where
n ∈ N .

p ::= J→ ∧ J←
J ::=M |M ∧ J

M ::=L | L ∨M
L ::=n | L:L

Our prototype implementation, discussed in Section 6, includes an algorithm for converting FLAM
principals to normal form. This algorithm is relatively straightforward: it applies lattice properties and
equational rules of authority projections as rewrite rules to reduce principals to normal form. We have
formalized and proved this algorithm correct in Coq, but omit discussion of it here for the sake of brevity.

10

4 Secure reasoning with dynamic trust

In this section, we present the FLAM system model and a set of inference rules for deriving authorization
decisions from the distributed system state. Unlike most previous models, FLAM does not presume uni-
versally agreed-upon trust relationships. Instead, principals may regard a trust relationship (i.e., delegation)
to be untrustworthy, or may wish to prevent others from learning of its existence. Furthermore, principals
do not have a global view of the system state and must communicate with other principals to discover new
relationships. These attributes make FLAM an appropriate model for authorization in distributed systems.

4.1 System model and trust configuration

Our goal is to model the security of a distributed system comprising various host nodes that keep track of
different parts of the system’s trust configuration. In FLAM, these nodes, like all other entities in the system,
are represented as principals. Thus, a host node is a primitive principal inN ; we use n and c to denote such
principals. We treat the trust configurationH as a distributed data structure, wherein each fragmentH(n) is
the delegation set stored at node n. Each delegation (p<q, `) has an associated delegation label ` expressing
the confidentiality and integrity of the delegation.

Definition 6 (FLAM trust configurations). A trust configuration H is a map from principals n ∈ N to
delegation sets. A delegation set is a set of tuples of the form (p<q, `) where p, q, ` are principals in P .

For example, a delegation (p< q, n←) might be hosted by principal n; in other words, (p< q, n←) ∈
H(n). The delegation label n← means that the delegation is public (since (n←)→ = ⊥) and has the integrity
of n. We make no well-formedness assumptions about H; for instance, a malicious node n might store the
delegation (n<>,>←).

This abstraction allows us to reason about information flow in the trust configuration without exposing
the details of the underlying distributed data structure. For instance, H(n) might represent a remote call
interface for requesting derived delegations from n, or it might represent delegations stored or replicated at
n that can be fetched on demand.

4.2 Flow-limited judgments

Authorization queries are submitted to principals that process them by using local data, by obtaining remote
data via communication with other principals, or by a combination of both. The answers to queries are used
to determine the relationships that currently exist between principals in the given trust configurationH.

Queries take the form of judgments; positive query results carry proofs (or derivations) of these judg-
ments. Derivation rules specify how to obtain proofs given a set of delegations. One approach would be
to represent judgments with the form D ` p < q, meaning that the relationship p < q holds assuming the
delegations in D.

However, constructing a proof in a distributed system creates information flows. Consequently, this form
of judgment has two fundamental problems. First, it fails to characterize the confidentiality and integrity of
the conclusion p < q. Second, the conclusion is the result of a distributed computation over the hosts that
collectively store the trust configuration H, so communicating with these hosts to obtain the delegations in
D could leak confidential information about the query or permit poaching attacks by the query’s issuer.

FLAM solves both problems by parameterizing authorization queries with policies that restrict the flow
of information as the query is answered. The resulting flow-limited judgments have the following form:

H; c; pc; ` ` p < q

11

Client list
Acme:Emp→

Acme

Bob

Acme:Emp→

Rival

Acme:Emp←
>←

Bob←

H; c; Acme:Emp←; Acme:Emp← 1 Acme:Emp→ v Rival→

H; c; Bob←; Acme:Emp← 1 Acme:Emp→ v Bob→
(1)

(2)

Figure 4: Section 2 attacks prevented. The boxed judgments do not hold robustly with the illustrated delegations.
Judgment (1) does not hold since Bob’s delegation to Rival cannot be used to robustly relabel Acme’s policies, closing
the delegation loophole. In (2), the query label Bob← has insufficient integrity to relabel Acme’s policies, preventing
Bob from poaching the client list.

Here, H is the trust configuration and c ∈ N is the current host performing the derivation. The policy `
is the derivation label, which is an upper bound in (P,v) for all delegation labels of delegations used in
the derivation. The label pc is the query label, which is an upper bound in (P,v) on the confidentiality
and integrity of the query. For remotely issued queries, the integrity of the originating host must flow to
the query label, and the query label must flow to the confidentiality of any host that is contacted during the
derivation.

Flow-limited judgments are constructed by inspecting the delegations in H. Accesses to local del-
egations, i.e. H(c), are not externally observable, but principals may also communicate with any host
n ∈ dom(H) to obtain judgments derived from remote delegations. We abbreviate judgments that hold in
any trust configuration, or statically, as ` p < q. For instance, ` p ∧ q < q holds statically.

As with the trust configuration H, we make no well-formedness assumptions about the query label or
derivation label specified in authorization queries. However, to protect their own security, we assume that
honest hosts specify a query label for top-level queries that characterizes the confidentiality and integrity of
the issuing context; hence the name pc for the program counter label, as in Jif [24]. Likewise, we assume
honest hosts will treat query results in accordance with the derivation label. In our technical report [33], we
describe a programming language whose type system verifies these assumptions.

4.3 Robust derivations

Tracking information flow through judgments is only the first step—we still need to eliminate delegation
loopholes and poaching attacks.

Consider the example of Section 2.1. We can model this scenario with the delegation set shown in
Figure 4. Acme grants Bob read-only access with the delegation (Bob < Acme:Emp→, Acme:Emp←). As
before, Bob delegates to Acme’s competitor Rival.

Delegation loopholes arise when attackers influence the derivation of sensitive queries—when deriva-
tions are not robust. In the example, we can close the loophole by eliminating the influence of attackers like
Bob on the derivation of queries about who acts for Acme’s principals. If Bob’s delegation cannot be used in
the proof of a query like Rival→ < Acme:Emp→, then the proof is robust, and Bob cannot influence whether
Acme:Emp→ can flow to Rival→.

FLAM’s derivation labels allow Acme to constrain Bob’s influence on the derivation. Consider the

12

following judgment, which holds in our example trust configuration.

H; c; pc; Acme:Emp← ` Bob < Acme:Emp→

It has integrity Acme:Emp←, so any derivation of this judgment can only depend on delegations that have
Acme:Emp’s integrity or greater in the authority ordering (<). In contrast, there is no robust proof of the fol-
lowing judgment since using Bob’s delegation would result in a proof with lower integrity than Acme:Emp←.

H; c; pc; Acme:Emp← 0 Rival < Acme:Emp

Poaching attacks arise when attackers influence the decision to relabel information—that is, when they
influence the context of a query. The query label represents the information flow context of such a query, so
by restricting this label, FLAM prevents attackers from poaching information.

For instance, Figure 4 shows Acme’s client list labeled with confidentiality Acme:Emp→. Suppose Bob
wants to copy this list to a file with confidentiality Bob→ so he can maintain access if he is fired. To do so,
Acme’s system requires that the following judgment holds.

H; c; Acme:Emp←; Acme:Emp← ` Bob < Acme:Emp

This judgment is immune to poaching attacks since neither the result nor the query itself is influenced by
Bob. Bob cannot independently issue such a query since his influence would taint the query label, shown
below.

H; c; Acme:Emp← ∨ Bob←; Acme:Emp← ` Bob < Acme:Emp

This query has insufficient authority to robustly relabel Acme:Emp→ to Bob→. This prevents Bob from
poaching Acme’s client list, giving Acme control of what information is released to Bob.

One might wonder why Acme requires Bob < Acme:Emp to hold instead of Bob→ < Acme:Emp→. The
answer illustrates a fundamental difference between information flow control and access control. Specif-
ically, Acme wants to know whether it is safe to enforce information labeled Acme:Emp→ with the policy
Bob→. This is a distinct goal from access control since Acme not only cares about the access to the client
list, but also the propagation of that data. Even though Bob cannot influence whether Acme:Emp→ v Bob→,
he does control what Bob→ flows to. Thus, Acme wants to ensure that Bob has sufficient integrity to enforce
the confidentiality of the client list. Since he does not, Acme should deny any request to relabel Acme:Emp→

to Bob→.

4.4 Speaking for other principals

Prior work on robust downgrading [18,34,35] of information flow policies places constraints on the influence
an attacker may have on declassification and endorsement. Specifically, a principal should not be able to leak
information by influencing downgrading decisions. Here, we seek similar constraints, but on information
flow authorizations in general, whether they represent a downgrade or not.

In FLAM, the voice of a principal q, written ∇(q), defines the minimum integrity required to influence
the flow of information labeled q.

Definition 7 (Principal voice). For a principal in normal form p→ ∧ q←, the voice of p→ ∧ q← is defined as

∇(p→ ∧ q←) , p← ∧ q←

13

[BOT] C ` p < ⊥ [TOP] C ` > < p [REFL] C ` p < p [PROJ]
C ` p < q
C ` pπ < qπ

[PROJR] C ` p < pπ [OWN1]

C ` o < o′
C ` p < p′

C ` o:p < o′:p′
[OWN2]

C ` o < o′
C ` p < o′:p′

C ` o:p < o′:p′
[CONJL]

C ` pk < p
k ∈ {1, 2}

C ` p1 ∧ p2 < p

[CONJR]

C ` p < p1
C ` p < p2

C ` p < p1 ∧ p2
[DISJL]

C ` p1 < p
C ` p2 < p

C ` p1 ∨ p2 < p
[DISJR]

C ` p < pk
k ∈ {1, 2}

C ` p < p1 ∨ p2

[TRANS]
C `p<q C `q<r

C `p<r
[DEL]

(p<q, `) ∈ H(c)

H; c; pc; ` ` p < q
[FWD]

H; c; pc; ` n < pc→ ∧ `
H;n; pc t ` t c←; ` u c→ ` p < q

H; c; pc; ` ` p < q

[WEAKEN]

H; c; pc′; `′ ` p < q
H; c; pc t `′; ` pc v pc′

H; c; pc t `′; ` `′ v `
H ∪H′; c; pc; ` ` p < q

Figure 5: Inference rules for flow-limited judgments. For brevity, C denotes the context H; c; pc; `. The union of
trust configurations is defined pointwise: (H ∪H′)(n) = H(n) ∪H′(n).

As its name suggests, the voice of a principal is related to the speaks-for relation [25, 27] found in
authorization logics. In these models, if Bob speaks for Alice (sometimes written Bob⇒ Alice) and Bob
says some proposition P is true, then Alice also says P is true. Flow-limited judgments permit a refinement
of speaks-for since we can reason directly about the influence of principals on authorization decisions.
In FLAM, a principal’s voice is the integrity needed to speak on its behalf, so Bob speaks for Alice if
Bob < ∇(Alice).

This version of speaks-for differs from that in other authorization logics. First, it derives from the in-
tegrity of principals and the acts-for relationships between them. Second, the speaks-for relation is transitive,
but not reflexive. Notice that Acme→ does not speak for itself.

As in [27], FLAM’s speaks-for relation distinguishes the concepts of speaking for and acting for a
principal. Previous DIFC models [2] have considered these concepts to be similar, but they are distinct in
FLAM to support reasoning separately about the confidentiality and integrity of principals. For instance, the
principal Acme← speaks for both Acme and Acme→, but acts for neither.

To provide end-to-end information flow security, FLAM distinguishes robust judgments that hold with
sufficient integrity to speak on behalf of the principals involved. Robust judgments in FLAM are identi-
fied by the symbol . FLAM’s inference rules, discussed below, use robust judgments to ensure that all
derivations exhibit robust information flow.

4.5 Rules for flow-limited reasoning

Figure 5 gives inference rules for deriving flow-limited judgments. Most rules are straightforward, encoding
properties of conjunctions (rules CONJL, CONJR), disjunctions (rules DISJL, DISJR), authority projections

14

[R-STATIC]
` p < q

C p < q
[R-LIFT]

H; c; pc; ` ∧∇(q) ` p < q
H; c; pc; ` ∇(p→) < ∇(q→)
H; c; pc; ` pc < ∇(q)

H; c; pc; ` p < q

[R-LIFTPC]
H; c; pc; ` ∧∇(q) ` pc < ∇(q)

H; c; pc; ` pc < ∇(q)
[R-CONJR]

C p < p1
C p < p2

C p < p1 ∧ p2
[R-DISJL]

C p1 < p
C p2 < p

C p1 ∨ p2 < p

[R-TRANS]

H; c; pc; ` p < q H; c; pc; ` q < r
H; c; pc; ` pc < ∇(r→)

H; c; pc; ` p < r
[R-FWD]

H; c; pc; ` n < pc→ ∧ ` ∧∇(q)
H;n; pc t ` t c←; ` u c→ p < q

H; c; pc; ` p < q

[R-WEAKEN]

H; c; pc′; `′ p < q
H; c; pc t `′; ` pc v pc′

H; c; pc t `′; ` `′ v `
H ∪H′; c; pc; ` p < q

Figure 6: Inference rules for robust judgments.

(rules PROJ and PROJR), ownership projections (rules OWN1, OWN2), and lattices in general (rules BOT,
TOP, REFL, TRANS). The DEL rule allows the use of a local delegation if its label matches the derivation
label of the context.

The WEAKEN rule allows judgment contexts to be weakened. If p < q is derivable with trust con-
figuration H and bounds pc′; `′, then it is still derivable after adding delegations5 to H or increasing the
restrictiveness of the bounds (pc v pc′ and `′ v `).

Like any other relabelings that use dynamic trust relationships, attackers might try to abuse these re-
labelings of pc and `′. For example, Bob could try use WEAKEN to hide his influence on a judgment by
boosting its derivation label from Acme:Emp← t Bob← to Acme:Emp←, or he could try to reduce a judgment’s
confidentiality by downgrading its derivation label from Acme:Emp→tBob→ to Bob→. The rule prevents this
by requiring the relabelings to be robust. Because these robustness proofs are only attempted after the rela-
beled judgment is proved, their query labels (pc t `′) are tainted with the derivation label `′ of the relabeled
judgment.

The FWD rule is used to derive acts-for judgments via remote hosts. The first premise ensures that c can
prove the remote host n is trusted to protect both the query’s confidentiality and its derivation label. In the
second premise, n derives the desired relationship with a query label that is tainted both with c’s integrity
and with the derivation label of the first premise. To ensure c can see the result, the derivation label is
attenuated by c’s confidentiality. If these premises hold, then n can release the result to c, and c can trust it
at label `, therefore c can conclude that the relationship holds.

The rules for reasoning about robust judgments are shown in Figure 6. The first three rules specify
how robust judgments derive from non-robust judgments. Rule R-STATIC permits static judgments to be
treated as robust judgments in any context, whereas rule R-LIFT derives robust judgments from dynamic
judgments. The first premise of R-LIFT ensures the judgment holds with the voice ∇(q) of the delegating

5The union of two trust configurations is defined to take their pointwise union: (H ∪H′)(n) = H(n) ∪H′(n)

15

principal. The second premise ensures that principals that speak for p’s confidentiality also speak for q’s
confidentiality6. The third premise ensures that the query’s context is sufficiently trusted to influence this
authorization decision. Rule R-LIFTPC handles judgments regarding the query label as a special case. Rules
R-CONJR, R-DISJL, R-WEAKEN, and R-TRANS are similar to their non-robust counterparts but possess
robust premises. Rule R-TRANS adds a query label restriction to TRANS to ensure that the query’s context
speaks for r. Likewise, R-FWD adds the restriction that remote principals must speak for the principal that
the judgment concerns.

The need for both robust and non-robust inference rules may not be immediately apparent. FLAM
constrains the flow of information during authorization by selectively prohibiting derivations that would
result in information leakage. However, reasoning exclusively with robust judgments is too restrictive since
it would eliminate many valid trust configurations and prevent many access control use-cases. For access
control decisions (made via non-robust queries), the robust judgments in FWD and WEAKEN ensure the
integrity and confidentiality of authorization decisions. For information flow control decisions (made via
robust judgments), the non-robust judgments in R-STATIC, R-LIFT, and R-LIFTPC provide a bootstrapping
mechanism for trust relationships that preserves information security.

5 Robust authorization

To demonstrate that the inference rules presented in the previous section prevent the various attacks de-
scribed in Section 2, we show that the rules ensure a novel security condition that we call robust authoriza-
tion. This security condition characterizes how both delegations and revocations may affect authorization
decisions in a particular information-flow context.

Theorem 1 (Robust authorization). If H; c; pc; ` ` p < q, let D ⊆ H be the delegations used in the
derivation. For each (p′ < q′, `′) ∈ D(n), define n0 . . . nk as the sequence of nodes in the derivation
between n and c, where n0 = n and nk = c, and let N =

∨
i<k ni. Then the following statements hold:

H; c; pc; ` `′ ∨N v ` (1)

H; c; pc; ` N < pc→ ∧ `← (2)

k > 0⇒ H; c; pc; ` c < (`′ ∨N)
→ (3)

The guarantees robust authorization bestows on authorization queries are quite strong. Remote princi-
pals cannot exceed their authority to influence the derivation, despite having the power to create arbitrary
delegations and participate in the derivation itself. In particular, the authorization mechanism preserves the
end-to-end security of each delegation’s information flow policy `′ (1) while preserving the confidentiality
pc→ of the query and the integrity `← of the result (2), and without leaking confidential information to c (3).
Conclusion (3) only applies to distributed derivations (where k > 0) since we permit a node to use a local
delegation without requiring proof that it acts for the delegation label.

FLAM derivations therefore never require unsafe communication: every remote node that participates in
a derivation must robustly act for the confidentiality pc→ of the query and integrity `← of the result. Results
are received by c only if c is permitted to learn (implicitly) that c acts for (`′ ∨N)→. Because FLAM makes
no assumptions about the relationship between n and `′, the disjunction N limits the authority of `′ to be no
greater than the nodes in the derivation, ensuring that malicious delegations do not influence the derivation

6The analogous premise for integrity is redundant since acting and speaking for integrity are equivalent: ` p < ∇(q←) ⇐⇒
` p < q←

16

beyond the authority of these nodes. From the perspective of confidentiality, the disjunction also ignores
information flows in which the claimed confidentiality of the delegation label exceeds the confidentiality
authority of nodes providing the delegation; ignoring such flows makes sense because confidentiality is
enforced by the providers, not by the recipient c.

Robust authorization is a proof-theoretic property since it defines security in terms of the relationship
between FLAM judgments and delegation labels. However, it bears some resemblance to semantic security
properties like noninterference. Adding or removing delegations with more confidentiality or less integrity
than ` cannot affect the output of queries bounded by `. However, since the judgments derivable in a
particular context define which flows are interfering and which are not, there is some subtlety in the statement
that certain delegations cannot affect these derivations. For example, the delegation (Bob< Acme, Bob←)
should be cause for concern: it asserts that Acme delegates to Bob, but with the integrity of Bob. Thus the
delegation should not be sufficient to prove that H; c; pc; Acme← ` Acme→ v Bob→. Theorem 1 states
that such delegations do not affect any judgments with the bound pc; Acme←. In this paper, we do not
make any formal connections between robust authorization and noninterference, but characterizing semantic
guarantees of FLAM is an interesting future research direction.

FLAM ensures robust judgments cannot be leveraged to perform poaching attacks or other non-robust
policy downgrades. The following lemma states that if a query holds with robust authority, then the query
label speaks for any principal whose dynamic delegations are used in the derivation.

Lemma 1 (Principal factorization). If H; c; pc; ` p < q, then there exist principals qs and qd where
q ≡< qs ∧ qd such that ` p < qs,H; c; pc; ` p < qd, and

H; c; pc; ` pc < ∇(qd)

In other words, queries with untrusted query labels can only derive robust judgments that hold statically,
preserving each principal’s control over the revocability of its information flow policies.

The fact that we can always split robust acts-for judgments into static and dynamic components means
that we can derive a more traditional transitivity rule for robust judgments:

[R-TRANS*]

H; c; pc; ` p < q
H; c; pc; ` q < r

H; c; pc; ` p < r

The main insight regarding the admissibility of R-TRANS* involves principal factorization. By Lemma 1,
for any robust judgmentH; c; pc; ` q < r, we can factor r into rs∧ rd such thatH; c; pc; ` pc < ∇(rd).
Therefore, any judgment H; c; pc; ` p < q in the same context can be used to derive H; c; pc; ` p < rd
by R-TRANS. This relationship, combined with an additional result regarding static judgments, gives us the
above rule.

Theorem 1 and Lemma 1 prove that attackers cannot use delegation and revocation to interfere with
authorization queries, eliminating the delegation loophole (Section 2.1) and poaching attacks (Section 2.2).
New delegations cannot cause unsafe communication to occur or cause existing delegations to be disclosed
(Section 2.3) unless the new delegations are sufficiently trusted. Furthermore, this result serves as a useful
guide to developers of DIFC systems and languages: supporting delegation and revocation while enforcing
information flow policies requires all relabeling of policies to be robust—otherwise, changes in the trust
configuration could be exploited to create new flows.

We formalized FLAM principals and our inference rules for deriving flow-limited judgments in Coq,
and used this formalization to prove Theorem 1 and Lemma 1. We make one primary assumption, that

17

Query: C ` p ∧ q < r ∨ s (C = H; c; pc; `)

Proof strategy 1:

C ` p < r
C ` p < r ∨ s

(DISJR)

C ` p ∧ q < r ∨ s
(CONJL)

Proof strategy 2:

C ` p < r
C ` p ∧ q < r

(CONJL)

C ` p ∧ q < r ∨ s
(DISJR)

Figure 7: Redundant work in the basic search algorithm. If the query is not provable, an exhaustive proof search must
be made before a negative result can be returned. Here, both CONJL and DISJR apply, so the search will try both proof
strategies shown. Without caching, redundant proof searches would be made for the two identical premises shown in
red.

principals that statically act for each other are equivalent. We believe this assumption can be avoided with
some refactoring, which we leave as future work.

6 FLAM prototype

Secure authorization has been a relatively active area of research for over a decade [8, 9, 11–14, 21–23], so
it might seem that the strong formal security guarantees offered by FLAM would be difficult to achieve in
practice.

We have demonstrated that FLAM can be used to provide robust authorization in realistic authorization
mechanisms by developing a prototype implementation and using it to implement ARBAC97 [15], an ex-
pressive role-based access control model. Our version of ARBAC97 uses owned principals to represent roles
and extends the strong security guarantees of FLAM to role-based access control; for example, untrusted
users cannot use authorization queries to infer the secret membership of roles. Our prototype currently only
uses rules R-LIFT and R-LIFTPC for reasoning about robust judgments, but these were sufficient for our
purposes.

6.1 Efficient flow-limited query processing

Our FLAM prototype answers acts-for queries through a proof search; the relationship being queried
is said to hold exactly when a proof of the relationship can be found. For simplicity, we assume that the
trust configuration does not change during the proof search; in practice, query isolation can be provided by
existing mechanisms for distributed transactions (e.g., [18]). The basic proof-search algorithm is a simple
depth-first search with cycle detection. It returns two types of results: PROVED (which comes with a proof)
and FAILED.

This algorithm alone performs poorly, however, owing to much duplicated work. Queries with FAILED
results are particularly expensive, since they require a full exhaustive proof search. For example, in Fig-
ure 7, if the query C ` p ∧ q < r ∨ s is unprovable, the algorithm must explore all possible proof strate-
gies, including using CONJL and DISJR, as shown. Both of these strategies have the unprovable subquery
C ` p < r, shown in red. Without caching, redundant proof searches would be made for these identical

18

query

pruned

(a) A pruned proof strategy

query

(b) A successful proof strategy

Figure 8: Proof diagrams showing two strategies for proving a query. Nodes represent premises. Edges represent proof
dependencies; unexplored edges are dotted. In strategy (a), the proof search for the blue node is pruned because its
proof depends on the red node, which would introduce a cycle in the proof diagram. Strategy (b) results in a successful
proof: the proof forms a DAG, wherein all leaf nodes are axioms.

subqueries. Furthermore, caching only positive results would not significantly improve the performance of
unprovable queries.

Naively caching intermediate negative results can lead to incompleteness due to searches that are pruned
to avoid infinite recursion and circular reasoning. Figure 8 illustrates this using proof diagrams. Nodes
represent premises to be proved, and edges represent their dependencies. Unexplored edges are dotted. In
the first proof strategy (Figure 8a), the proof of the blue node is pruned to avoid circular reasoning with the
red node. While it would be sound to cache a FAILED result for the blue node, doing so would be incomplete.
When the proof search later attempts the second proof strategy (Figure 8b), it finds a successful proof for
the red node via the green node. With a cached FAILED result for the blue node, the proof of the white node
would simply use the cached result, failing to notice that because the circularity with the red node has been
resolved, the blue node can now be proved.

To prevent this incompleteness, our implementation of FLAM uses an intermediate caching strategy
for pruned results. Instead of caching FAILED for pruned subqueries, we introduce an additional result
type, PRUNED. When a cycle is detected during proof search, the current subproof is abandoned and the
subquery is added to a cache of pruned queries. Each PRUNED cache entry contains a progress condition,
a boolean formula that expresses the conditions under which further progress can be made on the proof
of the subquery. In Figure 8, the first proof strategy would result in a PRUNED cache entry for the blue
subquery, with the progress condition Q = , indicating that further progress can be made on the proof of
the blue node exactly when the red node can be proved. Another progress condition might have the form
Q1 ∨ (Q2 ∧Q3), meaning that progress can be made if Q1 is proved or if both Q2 and Q3 are proved.

This cache is used by the proof search to improve performance when resolving shared subqueries. The
cache has three components: an acts-for cache for proofs of PROVED subqueries, a failed cache for FAILED
subqueries, and a pruned-search cache for PRUNED subqueries and their progress conditions. Figure 9 gives
the algorithm for updating the cache with a new result for a subquery query. At the core of this algorithm
is the rewriting of progress conditions in the pruned-search cache. If the new result is PROVED, the progress
conditions are rewritten to substitute instances of query with True (line 7), to indicate that the query
condition is satisfied. If this satisfies the progress condition of a pruned search q, then q should be provable,
and is removed from the cache (lines 8–9); a PROVED entry is not added for q yet because we do not yet have
a proof. If the new result is PRUNED, then instances of query are substituted with query’s progress condition
(line 15). Finally, if the new result is FAILED, then instances of query are substituted with False (line 21),
to indicate that the query condition is not satisfiable. If the progress condition of a pruned search q becomes
unsatisfiable, then q is also unprovable, and the cache is updated with a FAILED result for q (lines 27–28).

Given a query, for each applicable FLAM inference rule, the algorithm searches for a proof of each

19

1: function UPDATE(cache, query, type, data)
2: (proved, pruned, failed)← cache
3: if type = PROVED then
4: proved← proved[query 7→ data]
5: remove query from pruned
6: for [q 7→ Q] in pruned do
7: Q′ ← Q{query/True}
8: if Q′ |= True then
9: remove q from pruned

10: else
11: pruned← pruned[q 7→ Q′]

12: else if type = PRUNED then
13: pruned← pruned[query 7→ data]
14: for [q 7→ Q] in pruned do
15: pruned← pruned[q 7→ Q{query/data}]
16: else if type = FAILED then
17: add q to failed
18: remove q from pruned
19: new← ∅
20: for [q 7→ Q] in pruned do
21: Q′ ← Q{query/False}
22: if Q′ |= False then
23: add q to new
24: else
25: pruned← pruned[q 7→ Q′]

26: cache← (proved, pruned, failed)
27: for q in new do
28: cache← UPDATE(cache, q, FAILED,⊥)
29: return cache
30: return (proved, pruned, failed)

Figure 9: Algorithm for managing entries of the proof search cache. For type equal to PROVED or PRUNED, data is
either a proof of query or a progress condition, respectively.

premise. If a proof is found for all premises, then the search is successful, and the proof is returned. If any
of the premises’ proof searches were pruned, then the query may or may not be provable, so the query is
added to the pruned cache with the conjunction of the progress conditions of the pruned searches. Finally,
if any premise’s proof search fails, or if the conjunction of the progress conditions is unsatisfiable, then the
query is unprovable via the chosen rule. If no other FLAM rules apply, then the query is false. Appendix D
gives the complete search algorithm.

6.2 Example: ARBAC97 Access Control

To demonstrate the expressiveness of FLAM and the functionality of our implementation, we have adapted
the ARBAC97 role-based access control model for role management [15] using our FLAM implementation.
The implementation required only 242 lines of code, showing that FLAM is already quite expressive. Using
FLAM means our implementation of ARBAC97 also enjoys stronger security properties; in particular, robust

20

assignUser(a, u, r, pc, `){
if ∃(ar, cr,mn,mx) ∈ can assign
such that

H; c; pc; ` a < ar

H; c; pc; ` ∧ ar← u < cr
H; c; pc; ` ∧ ar← r < mn
H; c; pc; ` ∧ ar← mx < r

then

let `′ = (pc t `) ∧ (ar ∧ r)←

H := H ∪ [c 7→ (u < r, `′)]

}

(a) Authorize a’s assignment of user u to role
r. If the FLAM judgments hold, a delegation
u < r is created with the integrity of ar and r.

revokeUser(a, u, r, pc, `){
if ∃(ar,mn,mx, pc, `) ∈ can revoke
such that

H; c; pc; ` ∧ ar← a < ar
H; c; pc; ` ∧ ar← r < mn
H; c; pc; ` ∧ ar← mx < r

then

let `′ = (pc t `) ∧ (ar ∧ r)←

H :=
⋃

c∈dom(H)

[c 7→ rev(H, c, u < r, `′)]

}

(b) Authorize a’s revocation of u’s membership
in role r. If the FLAM judgments hold, all dele-
gations (u < r, `′′) where `′ v `′′ are revoked.

rev(H, c, p < q, `) , H(c)− {(p < q, `′) ∈ H(c) | H; c; pc; ` ` v `′}

(c) Revocation operation. Returns the delegation set for host c with all delegations (p < q, `′) where ` v `′ removed.

Figure 10: User–role assignment. The FLAM judgments ensure a is a member of the administrative role ar, that u
meets criteria cr (in Figure 10a), and that r is in the range [mn,mx]. Each judgment requires the integrity of ar to
ensure only administrators influence role management.

authorization means that attackers can neither influence the membership of roles nor learn anything about
confidential role assignments.

ARBAC97 controls trust management operations using three separate relations: user–role assignment
(UA), for assigning users to roles; permission–role assignment (PA), for specifying the permissions granted
to roles; and role–role assignment (RH), for defining role hierarchies. ARBAC authorizes a user’s modifica-
tions to these relations by ensuring an administrator is a member of the appropriate administrative role and
that modifications meet specified conditions.

The key difficulty in representing ARBAC’s role-management authorization policies is in the separation
between management authority and role membership. FLAM simplifies the ARBAC model since adminis-
trative roles, roles, users, and permissions may all be represented as principals. This allows the unification of
the three relations UA, PA, and RH into a single trust configuration H. Our version of ARBAC97, adapted
from the formalization presented in [36], leverages FLAM’s information flow tracking and expressive prin-
cipal algebra to preserve the separation of management authority and role membership inH.

In ARBAC, the authorization criteria for making modifications to the trust configuration is defined by
additional relations7. The relations can assign and can revoke encode policies for user–role assignment.

7For simplicity, we treat these relations as public and trusted, and thus do not track information flows on them.

21

Entries of can assign are tuples of principals (ar, c,mn,mx), where ar represents an administrative role,
cr represents some minimal criteria8 that users must meet to be assigned the role, and [mn,mx] represents
a range that bounds the role assignments ar is permitted to make. Entries of can revoke are tuples of
principals (ar,mn,mx) which are similar to those of can assign, but have no minimal criteria.

FLAM strengthens the guarantees of ARBAC97 by tracking information flow on modifications to trust
configuration and ensuring robust authorization. Figures 10a and 10b illustrate our encoding of user–role
assignment authorization. Each method includes a parameter pc that represents the information flow con-
text of the caller, and a label ` for specifying the confidentiality and integrity of the role assignment. In
Figure 10a, the assignment of user u to role r by administrator a is authorized if there is an entry in the
can assign relation such that the subsequent FLAM judgments hold robustly with the integrity of ar. The
first judgment ensures a is a member of the ar role. The second judgment ensures that the user acts for a
principal representing some minimal criteria. Finally, the third and fourth judgments ensure r is within the
range [mn,mx].

When the relevant FLAM judgments hold, delegation or revocation is performed with the integrity of
both ar and r. This indicates that the above methods endorse the delegation or revocation. As shown below,
we use these high-integrity delegations to keep role membership separate from role management.

ARBAC is a centralized access control model: there is a single hierarchy of administrative roles. In
addition to providing stronger security guarantees, our FLAM adaptation extends ARBAC to decentralized
settings. Administrative domains may differ on the roles assigned to a particular user. Let AR be a set of
administrative roles. We use a principal ad to represent an administrative domain, defined as the disjunction
of a set of administrative roles:

ad ,
∨

ar∈AR
ar

Then for a particular administrative domain ad, we can determine if user u is a member of role r with the
following FLAM query:

H; c; pc; ` ∧ ad← u < r

By requiring the integrity of ad, we ensure that only delegations created by some administrative role are
considered. Since the judgment is robust, the delegation must also have the integrity of r, meaning that ar
can only influence delegations via assignUser which constrains the roles ar may assign and the users it may
assign them to.

The remaining methods for permission–role management and role–role management share many sim-
ilarities with the above methods for user–role management. The definitions of these methods are found in
Appendix C.

Our implementation suggests a general approach for extending robust authorization to traditional access
control models. Translating the authority implied by the ARBAC97 roles to FLAM trust relationships
allow FLAM queries to securely implement ARBAC authorization requests without creating authorization
side channels. Coupling this translation with specialized role management code yields a more secure access
control system. This exercise demonstrates the expressiveness of FLAM policies as well as the effectiveness
of the implemented algorithm; we expect other access control systems could be enhanced in a similar way.

8In [15], criteria are more general, allowing cr to specify both roles that a user must have, as well as roles a user must not have.
By separating positive and negative criteria we can represent the general case in FLAM, but for simplicity of exposition we omit
negative criteria.

22

7 Robust authorization with Fλ

FLAM provides a secure model for authorization with information flow control. To explore how FLAM
can be used to build secure systems, we have defined a DIFC programming language based on FLAM that
supports robust trust management and authorization. Fλ (“FLAMbda”) is a security typed language whose
policies are FLAM principals. Fλ programs may delegate or revoke trust, and may issue authorization
queries to determine whether a relationship holds. To ensure a consistent view of the trust configuration,
all authorization queries occur in transactions, and updates to the trust configuration are applied atomically
upon transaction commit. The syntax (Figure 11) is based on λDSec [37], a DIFC language with dynamic
labels and dependent security types. We have redefined the syntax and semantics of λDSec labels to support
a unified representation of policies as principals with attenuated authority, and added flow-limited autho-
rization, policy downgrading, dynamic delegation and revocation, and distributed state.

Like other statically-typed DIFC languages, Fλ aims to enforce information-flow security via type-
checking. In addition to type safety, Fλ’s subtyping rule ensures that a supertype’s policy is at least as
restrictive as the subtype’s policy. Unlike other DIFC languages, Fλ also ensures that all relabelings are ro-
bust, ensuring by Theorem 1 that attackers cannot leak information by exploiting delegation and revocation.

Although Theorem 1 provides a strong guide for language designers, a choice remains in how the static
type system should interact with the dynamic trust configuration. In Fλ, program use explicit downgrading
to relabel policies: dynamic trust relationships may only be used to prove flows annotated with the relabel
keyword. All other flows must be proven secure for any trust configuration. Although some languages
require explicit declassification or endorsement for some relabelings, existing DIFC languages (e.g., [12,14,
18, 24, 35, 38]) do not regard relabeling as a downgrading operation. In these languages, any relationship
that holds in a particular context may be used to prove that a flow is valid.

In light of the attacks discussed in Section 2, we find this implicit use of dynamic trust information
unsatisfying. First, it violates the principle of least privilege [39] since programs may wield their full
authority whether or not they require it. Implicit downgrading could lead to unintentional errors when a
program can declassify information (i.e., in a high-integrity context), but the developer does not intend to.
Consequently, high-integrity code would become more dangerous and would require more careful auditing.

Another weakness of implicit downgrading relates to revocation. As with unintentional declassification
or endorsement, allowing policies to be relabeled implicitly makes it more difficult to reason about what
a principal retains access to after a revocation. Here also, additional auditing may be required to ensure
information was not relabeled to other policies prior to a revocation.

The Fλ type system makes explicit any relabelings that are based on dynamic information using the
relabel keyword. This approach ensures the intentions of the developer are clear. Implicit relabelings are
permitted, but only if they can be proven safe in an empty trust configuration. Therefore, these relabelings
are safe in any trust configuration.

7.1 Operational semantics of Fλ

The evaluation rules for the Fλ authorization operations are presented in Figure 12. The complete Fλ
operational semantics is presented in Appendix A. The state σ = 〈σH, σM 〉 of a Fλ program includes the
trust configuration σH and σM , a map from typed locations mτ@a to values.

The premises of E-IFTRUE and E-IFFALSE are FLAM authorization queries parameterized by the dy-
namic principals in the program. Depending on the result of the query, execution proceeds to e1 or e2. In an
implementation of Fλ, these rules would define the interface with a FLAM library such as our prototype in
section 6. E-TRUST creates a new delegation at host r with the specified information policy `. E-REVOKE

23

D ::= D | (p<p, `) , D | ε
β ::= int | prin | unit | τ@a ref

| (x :τ)
D ; pc−−−→ τ | (x :τ) ∗ τ

τ ::= β`
v ::= n | p closed | () | mτ@a

| λ(x :τ)[D ; pc]. e | (x=v, v :τ)
e ::= x | v | e e | !e | e := e

| refτ@a e | let (x, y)=e in e
| if p<p with ` at ` then e else e
| p trust p with ` at ` | relabel e `
| p revoke p with ` at `

For x ∈ V (variables), n ∈ Z, m ∈M (locations), and p, `, a, pc ∈ P with primitive principals k ∈ N ∪ V .

Figure 11: Syntax of Fλ.

performs a revocation visible at policy `. Any delegations with labels at least as restrictive as ` are removed
(robustly), but less restrictive delegations are unaffected, ensuring the revocation doesn’t leak information
or influence trusted operations. Relabeling of information, in rule E-RELABEL, is a purely static operation
with no run-time effect.

Memory locations mτ@a may be stored at remote hosts. The access policy [20] a represents a bound on
the confidentiality authority of that host’s principal. Any principal r such that ` r < a may be a host for
memory or delegations with access policy a. Because this judgment holds with any trust configuration and
delegation set, revocations can never cause the host of a delegation or memory location to become invalid.
Note that via R-STATIC, such judgments are also robust.

Accesses to resources stored at such a host are observable by that host’s principal. Evaluation steps that
generate a potentially observable event α are marked by α−→. The function obs(α), defined below, denotes the
principal with the least authority capable of observing an event. For α = · (no event), no event is observable
so obs(·) = >→.

Definition 8 (Event observability).

obs(α) =

{
pc→ α = pc(· · ·)
>→ α = ·

Though Fλ is design to model distributed computation, in this paper we are concerned with semantic
security guarantees for sequential programs. Thus, for simplicity, we do not define any mechanisms for
concurrency control.

7.2 Fλ type system

Figure 13 shows the typing rules for the trust-related operations of Fλ. The typing judgment for Fλ has the
general form Γ ;D ; pc ` e : τ , where Γ is a type environment mapping variables to types, D is the static
view of the current delegation set, and pc is the information flow policy on the program counter.

Authorization queries are integrated into the typing context via rule T-IF. The second premise of T-IF

ensures the FLAM query label is at least as restrictive as the pc label and the labels on the query parameters.
Validated queries are appended to the static trust configuration, allowing them to be reused statically without
communication. These entries are used to perform relabelings via T-RELABEL, which ensures that all such
relabelings are robust. The complete set of typing rules are presented in Appendix B.

24

〈e, σ〉 α−→ 〈e′, σ′〉

[E-IFTRUE]
σH; pc; ` ` p < q σ′ = 〈σH;σM 〉

〈if p<q with ` at pc then e1 else e2, σ〉
pc(p,q,`)−−−−−→ 〈e1, σ′〉

[E-IFFALSE]
σH; `; pc→ 0 p < q

〈if p<q with ` at pc then e1 else e2, σ〉
pc(p,q,`)−−−−−→ 〈e2, σ〉

[E-TRUST]
H′ = σH[r 7→ σH(r), (p<q, `)]

〈p trust q with ` at r, σ〉 r(+,p,q,`)−−−−−−→ 〈(), 〈H′;σM 〉〉

[E-REVOKE]
H′ = [r 7→ rev(σH, r, p<q, `) | σH; pc; ` r < pc→]

〈p revoke q with ` at pc, σ〉 pc(−,p,q,`)−−−−−−−→ 〈(), 〈H′;σM 〉〉
[E-RELABEL] 〈relabel v `, σ〉 ·−→ 〈v, σ〉

rev(H, r, p<q, `) ,
H(r)− {(p<q, `′) ∈ H(r) | H; c; pc; ` ` v `′}

Figure 12: Semantic rules for Fλ authorization operations.

The typing rule and updates to the trust configuration are parameterized by . In rule T-IF, these policies
limit the direct delegations used to make an authorization judgment. Rules T-TRUST and T-REVOKE ensure
updates to the trust configuration respect these policies.

Notably absent from the type system of Fλ is an explicit notion of downgrading authority. Many DIFC
systems (e.g., [3–7, 18, 35]) constrain where policy downgrades may occur in the system by designating
processes or classes with downgrading authority. As in Rx [12] and RTI [14], Fλ declassifications and
endorsements are expressed by updating trust relationships. The integrity policies on delegations and re-
vocations ensure that decisions to relabel are only influenced by trusted principals. Since delegation may
change the interpretation of confidentiality and integrity policies simultaneously, the delineation between
downgrading a confidentiality policy and downgrading an integrity policy is less natural. Therefore, Fλ
does not explicitly distinguish between declassification and endorsement. Instead, policy downgrades are
performed by delegating and relabeling expressions.

We assume that the labels of memory locations and delegations are enforceable by the hosts of each
resource regardless of any revocations that may occur. This ensures revocations cannot cause the location
of a resource to become insecure. We formalize these assumptions with the following definition.

Definition 9 (Well-formed program elements). MemoryM is well-formed if ∀mβ`@a ∈ dom(M), β v a
and ` M(mβ`@a) : β`. A configuration 〈e, σ〉 is well-formed if FV (e) = ∅, loc(e) ⊆ dom(σM), and σM
is well-formed.

7.3 Example: implementing screening policies

Information screening policies, historically called a “Chinese wall,” are used to prevent conflicts of interest.
These policies are familiar in access control settings, but rely on properties previous DIFC systems cannot

25

Γ ;D ; pc ` e : τ

[T-TRUST]
Γ ;D ; pc ` `i : prin`′i i ∈ {1, 2, 3, 4}

⊔
i
`′i t pc v `3 `4 < `3

Γ ;D ; pc ` `1 trust `2 with `3 at `4 : unit⊥

[T-REVOKE]
Γ ;D ; pc ` `i : prin`′i i ∈ {1, 2, 3, 4}

⊔
i
`′ t pc v `3 `4 < `3

Γ ;D ; pc ` `1 revoke `2 with `3 at `4 : unit⊥

[T-RELABEL]
Γ ;D ; pc ` e : β` [c 7→ D]; pc; `′ ` v `′

Γ ;D ; pc ` relabel e `′ : β`′

[T-IF]

Γ ;D ; pc ` `i : prin`′i i ∈ {1, 2, 3, 4}

⊔
i
`′i t pc v `4 Γ ;D, (`1<`2, `3) ; `3 t `4 ` e1 : τ Γ ;D ; `3 t `4 ` e2 : τ

Γ ;D ; pc ` if `1<`2 with `3 at `4
then e1 else e2

:
⊔

i
`′i t `3 t τ

Figure 13: Typing rules for Fλ authorization operations.

AcmeAcct

Alice

RivalConflicts AcmeConflicts

RivalAcct

Bob

Figure 14: Information screening: Bob should not be allowed to act for AcmeAcct (dashed line) since it is a conflict
of interest.

provide. Integrating such policies into DIFC systems is tempting since the inherent compositionality of
information flow enable decentralized screening policies managed by mutually distrustful principals.

For example, a law firm, Loblaw LLC, has both Acme and Rival as clients. Loblaw uses screening
policies to eliminate conflicts of interest by preventing lawyers from accessing both Acme and Rival data.
Each screening policy is represented by two principals: an “account” principal representing the group with
access to client’s account data, and a “conflicts” principal, representing the client’s competitors. Membership
in these groups is represented by trust delegation: Alice is a member of the AcmeAcct group if Alice <
AcmeAcct. Figure 14 shows the trust configuration of these screening policies. Alice has access to the Acme
account, while Bob has access to the Rival account. Since Acme and Rival are competitors, the RivalAcct
principal is a member of Rival’s conflict group AcmeConflicts. Since Bob is a member of the RivalAcct
group, the screening policy should prevent Bob from being added to AcmeAcct.

Figure 15 shows implementations of two core operations of the screening policy pattern. Each screening
policy has an owner o who manages the screening policy. In our example, owner o would be Loblaw LLC.
The owned principal o : g represents the group with access to the protected information, e.g., AcmeAccts.
Principal o : x represents the conflict group, e.g. AcmeConflicts. The principal o : p is the ownership
projection that represents the member to add. Additionally, the confidentiality of o : p’s membership in
o : g or o : x is represented by s→. It is easy to check that this Fλ program type-checks. Therefore, only
principals with integrity o : g← may influence the membership of o : g or o : x, and only principals trusted

26

λ(o:prins→∧o:g←, p:prins→∧o:g←, g:prins→∧o:g←,

s:prins→∧o:g←, x:prins→∧o:g←)

[s→ ∧ o : g←].
if o:p < o:x with s→ ∧ o : g← at s→ ∧ o : g← then ()
else o:g trust o:p with s→ ∧ o : g← at s→ ∧ o : g←

(a) addmember: Add o : p to group o : g unless o : p<o : x.

λ(o:prins→∧ o:g←, p:prins→∧ o:g←, g:prins→∧ o:g←,

s:prins→∧ o:g←, x:prins→∧ o:g←)

[s→ ∧ o : g←].
if o:p < o:g with s→ ∧ o : g← at s→ ∧ o : g← then ()
else o:x trust o:p with s→ ∧ o : g← at s→ ∧ o : g←

(b) addconflict: Add o : p to conflicts o : x unless o : p<o : g.

Figure 15: Primitives for the information screening policy pattern

with confidentiality s→ can learn the members of these groups.

8 Related work

The connection between delegation and policy downgrades, here called the delegation loophole, is identified
in [10] and further developed in [12]. These papers also discuss secret trust relationships, and thus have
similar threat models to FLAM. We are not aware of previous work addressing poaching attacks.

Broberg et al. [40] identify classes of flows which specific information flow models may consider secure
or insecure. Delegation loopholes are an example of a time-transitive flow in their terminology. FLAM
considers these flows insecure since they permit attackers to influence how information is relabeled. FLAM
also considers poaching attacks to be unsafe since attackers may obtain information not directly released to
them, which undermines the effectiveness of revocation. These flows are not completely characterized by
the classes presented in [40], but share some characteristics with the direct-release class of flows.

FLAM’s bounded derivation rules place information flow constraints on which delegations may be
used to derive judgments. This differs from previous approaches (e.g., Rx roles [12] and Flume capabil-
ity groups [5]), which give a single information flow bound for all trust relationships of a principal. As
recognized by Bandhakavi et al. [14], a single bound is too restrictive since it must also protect delegations
made by other principals. So, when the bound of principal p is more restrictive than the bound of principal q,
either q cannot delegate to p or p’s bound must be downgraded (as in [12]), even though p might not trust q.
RTI [14], like FLAM, overcomes these restrictions by tracking information flow at the level of delegations
and ignoring relationships that exceed information flow bounds. However, since relabeling is not robust in
RTI, it remains vulnerable to the delegation loophole and poaching attacks. FLAM’s flows-to relation is
more consistent with decentralized information flow control principles: the authorization of a flow depends
only on those principals who speak for the policies in question.

Label algebras [41] abstract the structure and semantics of the security policies of several DIFC systems.
It might appear that a clever encoding of FLAM contexts (i.e., pc; `) as label algebra authorities might serve
to represent FLAM as a label algebra. However, such an encoding would be too abstract to represent con-
ditions such as robust authority or even robust downgrading, so delegation loopholes and poaching attacks
cannot be addressed within this framework. For instance, the noninterference lemma given in [41] for an

27

example language admits non-robust declassification, even without changes to the trust configuration.
Many models and mechanisms have been suggested for expressive, decentralized authorization and

trust management [26, 42–49]. Few consider the information security of the authorization policies or the
authorization process. For instance, Birgisson et al. [49] note that, under certain conditions, an attacker
could use malicious credentials to probe for private information such as group membership. Such an attack
is possible in many frameworks. DCC [50] has been used to model both information flow control and
authorization logic [27], but not both simultaneously.

Several authorization systems use access control policies to protect sensitive credentials. In trust negoti-
ation [8,22,23], principals iteratively exchange credentials protected by access control policies, withholding
sensitive credentials until sufficient trust has been established. Minami and Kotz [11, 13] encrypt autho-
rization proofs based on access control policies to protect the confidentiality and integrity of authorization
results, though they ignore side-channels. Because access control policies are not compositional, they are
insufficient for controlling the propagation of sensitive credentials: the rules for disclosure may vary arbitrar-
ily between principals. FLAM unifies principals and information flow control policies, which are inherently
compositional, and enforces end-to-end security of trust relationships.

Garg and Pfenning [51] present a constructive authorization logic that ensures assertions made by un-
trusted principals cannot influence the truth of statements made by other principals, similar to the way
low-integrity delegations in FLAM cannot lead to unsafe relabelings.

Becker [52] discusses probing attacks that reveal secret portions of authorization policies to an attacker;
Bryans et al. [53] compare noninterference and opacity as security conditions for confidential policies.
FLAM ensures queries of the trust configuration satisfy robust authorization, so probing attacks cannot re-
veal confidential information. Opacity is a possibilistic notion of security, meaning that an authorization
decision may depend on secret information, provided that the same result could derive from public infor-
mation. Possibilistic security conditions are often inadequate in settings with attackers that have (or can
acquire) additional knowledge, perhaps through additional queries.

Some type systems proposed for information flow control encode authorized policy downgrades directly
in data types (e.g., [54, 55]) or with respect to privileges granted to code (e.g. [56]). This removes some of
the need for an underlying authorization mechanism, permitting developers to model trust relations using
the type system or structure of the program. Such type systems are in a sense too low-level to be directly
vulnerable to delegation loopholes or poaching attacks, but the authorization mechanisms they encode may
still be vulnerable. FLAM can provide guidance for a way to obtain robust authorization in these systems.

9 Conclusions

We have shown that in a decentralized, distributed setting, mechanisms for both DIFC and authorization
currently exhibit security vulnerabilities. The core problem is that neither security mechanism tracks how
information flows through the authorization process itself. Consequently, both mechanisms introduce side
channels, and DIFC systems are subject to newly identified delegation loopholes and poaching attacks.
When the trust configuration is dynamic and can be affected by partially trusted principals, additional con-
trols are needed to make relabeling secure.

We introduced flow-limited authorization in FLAM as a simple, coherent, and powerful way to address a
set of fundamental, interconnected security issues. FLAM unifies principals with information flow policies
through a novel principal algebra. It supports integrated reasoning about both authorization and information
flow control so that delegations are trusted only when appropriate and kept secret when necessary; further,
authorization side channels are explicitly controlled. A key insight is that relabeling information flow poli-

28

cies is really a downgrading operation that can be made secure by preventing untrusted principals from
influencing relabeling decisions.

We have formalized FLAM in Coq and proved strong results: FLAM provides robust authorization, a
new security condition that bounds an attacker’s influence on authorization decisions and eliminates side-
channels, even when the attacker is able to modify the trust configuration and make arbitrary queries.

We have implemented the FLAM principal normalization algorithm and system of inference rules (with
the exception of some robustness rules). Our prototype efficiently answers FLAM queries using a specialized
caching protocol.

FLAM not only prevents security vulnerabilities, but also extends decentralized information flow control
to trust management systems with expressive security models like role-based access control. We expect
many common access control patterns have interesting new DIFC analogues when expressed using FLAM.

Acknowledgments

We thank Michael Clarkson, Fred Schneider, Ross Tate, and especially Aslan Askarov and Mike George
for helpful discussions on a variety of topics spanning trust and information flow, authorization logic, and
proof search algorithms. Abhishek Anand and Andrew Hirsch provided insight for formalizing FLAM
in Coq. For their insightful comments on our submission, we thank Eleanor Birrell, Steve Chong, Andrew
Hirsch, Chin Isradisaikul, Elisavet Kozyri, Tom Magrino, Laure Thompson, Bart van Delft, Danfeng Zhang,
Yizhou Zhang, and our anonymous reviewers. This work was supported by an NDSEG Fellowship, by grant
N00014-13-1-0089 from the Office of Naval Resesearch, by MURI grant FA9550-12-1-0400, and by a grant
from the National Science Foundation (CCF-0964409). This paper does not necessarily reflect the views of
any of these sponsors.

References

[1] J. A. Goguen and J. Meseguer, “Security policies and security models,” in Proc. IEEE Symp. on Secu-
rity and Privacy, Apr. 1982, pp. 11–20.

[2] A. C. Myers and B. Liskov, “Protecting privacy using the decentralized label model,” ACM
Transactions on Software Engineering and Methodology, vol. 9, no. 4, pp. 410–442, Oct. 2000.

[3] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler, E. Kohler, D. Mazières,
F. Kaashoek, and R. Morris, “Labels and event processes in the Asbestos operating system,” in
Proc. 20th ACM Symp. on Operating System Principles (SOSP), Oct. 2005.

[4] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières, “Making information flow explicit in
HiStar,” in Proc. 7th USENIX Symp. on Operating Systems Design and Implementation (OSDI), 2006,
pp. 263–278.

[5] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and R. Morris, “Information
flow control for standard OS abstractions,” in Proc. 21st ACM Symp. on Operating System Principles
(SOSP), 2007.

[6] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and E. Witchel, “Laminar: Practical fine-grained
decentralized information flow control,” in ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI), 2009.

29

http://www.cs.cornell.edu/andru/papers/iflow-tosem.pdf
http://www.cs.cornell.edu/andru/papers/iflow-tosem.pdf
http://dl.acm.org/citation.cfm?id=1095813
http://dl.acm.org/citation.cfm?id=1095813
http://dl.acm.org/citation.cfm?id=1095813
http://dl.acm.org/citation.cfm?id=2018419
http://dl.acm.org/citation.cfm?id=2018419
http://dl.acm.org/citation.cfm?id=2018419
http://dl.acm.org/citation.cfm?id=1294293
http://dl.acm.org/citation.cfm?id=1294293
http://dl.acm.org/citation.cfm?id=1294293
http://dl.acm.org/citation.cfm?id=1542484
http://dl.acm.org/citation.cfm?id=1542484
http://dl.acm.org/citation.cfm?id=1542484

[7] W. Cheng, D. R. K. Ports, D. Schultz, V. Popic, A. Blankstein, J. Cowling, D. Curtis, L. Shrira,
and B. Liskov, “Abstractions for usable information flow control in Aeolus,” in Proc. 2012 USENIX
Annual Technical Conference, Jun. 2012.

[8] W. H. Winsborough, K. E. Seamons, and V. E. Jones, “Automated trust negotiation,” in DARPA
Information Survivability Conference and Exposition, 2000. DISCEX’00. Proceedings, vol. 1, Jan.
2000, pp. 88–102.

[9] W. H. Winsborough and N. Li, “Safety in automated trust negotiation,” in Proc. IEEE Symp. on
Security and Privacy, May 2004, pp. 147–160.

[10] M. Hicks, S. Tse, B. Hicks, and S. Zdancewic, “Dynamic updating of information-flow policies,” in
Proc. Foundations of Computer Security Workshop, 2005.

[11] K. Minami and D. Kotz, “Secure context-sensitive authorization,” Journal of Pervasive and Mobile
Computing, vol. 1, no. 1, pp. 123–156, March 2005.

[12] N. Swamy, M. Hicks, S. Tse, and S. Zdancewic, “Managing policy updates in security-typed
languages,” in Proc. 19th IEEE Computer Security Foundations Workshop, Jul. 2006, pp. 202–216.

[13] K. Minami and D. Kotz, “Scalability in a secure distributed proof system,” in Proc. 4th International
Conference on Pervasive Computing, ser. Lecture Notes in Computer Science, vol. 3968. Dublin,
Ireland: Springer-Verlag, May 2006, pp. 220–237.

[14] S. Bandhakavi, W. Winsborough, and M. Winslett, “A trust management approach for flexible policy
management in security-typed languages,” in Computer Security Foundations Symposium, 2008,
2008, pp. 33–47.

[15] R. Sandhu, V. Bhamidipati, and Q. Munawer, “The ARBAC97 model for role-based administration of
roles,” ACM Transactions on Information and System Security (TISSEC), vol. 2, no. 1, pp. 105–135,
1999.

[16] H. Chen and S. Chong, “Owned policies for information security,” in Proc. 17th IEEE Computer
Security Foundations Workshop, Jun. 2004.

[17] S. Chong, K. Vikram, and A. C. Myers, “SIF: Enforcing confidentiality and integrity in web applica-
tions,” in Proc. 16th USENIX Security Symp., Aug. 2007.

[18] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C. Myers, “Fabric: A platform for secure
distributed computation and storage,” in Proc. 22nd ACM Symp. on Operating System Principles
(SOSP), Oct. 2009, pp. 321–334.

[19] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers, “Secure program partitioning,” ACM
Trans. on Computer Systems, vol. 20, no. 3, pp. 283–328, Aug. 2002.

[20] O. Arden, M. D. George, J. Liu, K. Vikram, A. Askarov, and A. C. Myers, “Sharing mobile code
securely with information flow control,” in Proc. IEEE Symp. on Security and Privacy, May 2012, pp.
191–205.

[21] W. H. Winsborough and N. Li, “Towards practical automated trust negotiation,” in Proc. 3rd Policies
for Distributed Systems and Networks. IEEE, 2002, pp. 92–103.

30

http://dl.acm.org/citation.cfm?id=2342833
http://dl.acm.org/citation.cfm?id=2342833
http://dl.acm.org/citation.cfm?id=2342833
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=824965
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=824965
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=824965
http://dl.acm.org/citation.cfm?id=1178623
http://dl.acm.org/citation.cfm?id=1178623
http://www.cs.umd.edu/~mwh/papers/secupdate.pdf
http://www.cs.umd.edu/~mwh/papers/secupdate.pdf
http://www.cs.dartmouth.edu/~dfk/papers/minami-jcsa.pdf
http://www.cs.dartmouth.edu/~dfk/papers/minami-jcsa.pdf
http://www.cs.umd.edu/projects/PL/rx/rx.pdf
http://www.cs.umd.edu/projects/PL/rx/rx.pdf
http://www.cs.dartmouth.edu/~dfk/papers/minami-scalability.pdf
http://www.cs.dartmouth.edu/~dfk/papers/minami-scalability.pdf
http://www.cs.dartmouth.edu/~dfk/papers/minami-scalability.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4556677
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4556677
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4556677
http://dl.acm.org/citation.cfm?id=300839
http://dl.acm.org/citation.cfm?id=300839
http://dl.acm.org/citation.cfm?id=300839
http://dl.acm.org/citation.cfm?id=1009380.1009671
http://dl.acm.org/citation.cfm?id=1009380.1009671
http://www.cs.cornell.edu/andru/papers/fabric-sosp09.html
http://www.cs.cornell.edu/andru/papers/fabric-sosp09.html
http://www.cs.cornell.edu/andru/papers/fabric-sosp09.html
http://www.cs.cornell.edu/andru/papers/sosp01/spp-tr.pdf
http://www.cs.cornell.edu/andru/papers/sosp01/spp-tr.pdf
http://www.cs.cornell.edu/andru/papers/mobile.html
http://www.cs.cornell.edu/andru/papers/mobile.html
http://www.cs.cornell.edu/andru/papers/mobile.html

[22] M. Winslett, C. C. Zhang, and P. A. Bonatti, “Peeraccess: A logic for distributed authorization,” in
Proc. 19th ACM Conf. on Computer and Communications Security (CCS). ACM, 2005, pp. 168–179.

[23] C. C. Zhang and M. Winslett, “Distributed authorization by multiparty trust negotiation,” in ESORICS
2008. Springer, 2008, pp. 282–299.

[24] A. C. Myers, “JFlow: Practical mostly-static information flow control,” in Proc. 26th ACM Symposium
on Principles of Programming Languages (POPL), Jan. 1999, pp. 228–241.

[25] B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentication in distributed systems: Theory
and practice,” in Proc. 13th ACM Symp. on Operating System Principles (SOSP), Oct. 1991, pp. 165–
182, Operating System Review, 253(5).

[26] F. B. Schneider, K. Walsh, and E. G. Sirer, “Nexus Authorization Logic (NAL): Design rationale and
applications,” ACM Trans. Inf. Syst. Secur., vol. 14, no. 1, pp. 8:1–8:28, Jun. 2011.

[27] M. Abadi, “Access control in a core calculus of dependency,” in Proc. 11th ACM SIGPLAN Int’l
Conf. on Functional Programming. New York, NY, USA: ACM, 2006, pp. 263–273.

[28] N. Broberg and D. Sands, “Flow locks: Towards a core calculus for dynamic flow policies,” in Pro-
gramming Languages and Systems, Mar. 2006, pp. 180–196.

[29] R. S. Sandhu, “Role hierarchies and constraints for lattice-based access controls,” in Proc. 4th European
Symp. on Research in Computer Security (ESORICS), Sep. 1996.

[30] D. Ferraiolo and R. Kuhn, “Role-based access controls,” in 15th National Computer Security Confer-
ence, 1992.

[31] L. Zheng and A. C. Myers, “End-to-end availability policies and noninterference,” in Proc. 18th IEEE
Computer Security Foundations Workshop, Jun. 2005, pp. 272–286.

[32] J. Liu and A. C. Myers, “Defining and enforcing referential security,” in Proc. 3rd Conf. on Principles
of Security and Trust, Apr. 2014, pp. 199–219.

[33] O. Arden, J. Liu, and A. C. Myers, “Flow-limited authorization: Technical report,” May 2015.

[34] S. Chong and A. C. Myers, “Decentralized robustness,” in Proc. 19th IEEE Computer Security
Foundations Workshop, Jul. 2006, pp. 242–253.

[35] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom, “Jif 3.0: Java information flow,”
Jul. 2006, software release, http://www.cs.cornell.edu/jif.

[36] M. V. Tripunitara and N. Li, “A theory for comparing the expressive power of access control models,”
Journal of Computer Security, vol. 15, no. 2, pp. 231–272, 2007.

[37] L. Zheng and A. C. Myers, “Dynamic security labels and static information flow control,” International
Journal of Information Security, vol. 6, no. 2–3, Mar. 2007.

[38] N. Broberg, B. van Delft, and D. Sands, “Paragon for practical programming with information-flow
control,” in Programming Languages and Systems: 11th Asian Symposium, APLAS 2013, Melbourne,
VIC, Australia, December 9-11, 2013. Proceedings. Springer, 2013, pp. 217–232.

31

http://www.cs.cornell.edu/andru/papers/popl99/popl99.pdf
http://www.cs.cornell.edu/andru/papers/popl99/popl99.pdf
http://doi.acm.org/10.1145/1952982.1952990
http://doi.acm.org/10.1145/1952982.1952990
http://doi.acm.org/10.1145/1159803.1159839
http://doi.acm.org/10.1145/1159803.1159839
http://www.cs.cornell.edu/andru/papers/avail.pdf
http://www.cs.cornell.edu/andru/papers/avail.pdf
http://dx.doi.org/10.1007/978-3-642-54792-8_11
http://dx.doi.org/10.1007/978-3-642-54792-8_11
http://hdl.handle.net/1813/40138
http://www.cs.cornell.edu/andru/papers/robdlm.pdf
http://www.cs.cornell.edu/andru/papers/robdlm.pdf
http://www.cs.cornell.edu/jif
http://www.cs.cornell.edu/jif
http://www.cs.cornell.edu/jif

[39] J. H. Saltzer, “Protection and the control of information sharing in Multics,” Comm. of the ACM,
vol. 17, no. 7, pp. 388–402, Jul. 1974.

[40] N. Broberg, B. van Delft, and D. Sands, “The anatomy and facets of dynamic policies,” in IEEE
Symp. on Computer Security Foundations. IEEE, 2015.

[41] B. Montagu, B. C. Pierce, and R. Pollack, “A theory of information-flow labels,” in Proc. 26th IEEE
Symp. on Computer Security Foundations, Jun. 2013, pp. 3–17.

[42] C. Ellison, “SPKI requirements,” Internet RFC-2692, Sep. 1999.

[43] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen, “SPKI certificate theory,”
Internet RFC-2693, Sep. 1999.

[44] M. Y. Becker, C. Fournet, and A. D. Gordon, “SecPAL: Design and semantics of a decentralized
authorization language,” Journal of Computer Security, vol. 18, no. 4, pp. 619–665, 2010.

[45] Y. Gurevich and I. Neeman, “DKAL: Distributed-knowledge authorization language,” in IEEE
Symp. on Computer Security Foundations. IEEE, 2008, pp. 149–162.

[46] M. Abadi, M. Burrows, B. W. Lampson, and G. D. Plotkin, “A calculus for access control in distributed
systems,” ACM Trans. on Programming Languages and Systems, vol. 15, no. 4, pp. 706–734, 1993.

[47] N. Li, B. N. Grosof, and J. Feigenbaum, “Delegation logic: A logic-based approach to distributed
authorization,” ACM Transactions on Information and System Security (TISSEC), vol. 6, no. 1, pp.
128–171, 2003.

[48] N. Li, J. C. Mitchell, and W. H. Winsborough, “Design of a role-based trust-management framework,”
in Proc. IEEE Symp. on Security and Privacy, 2002, pp. 114–130.

[49] A. Birgisson, J. G. Politz, Úlfar Erlingsson, A. Taly, M. Vrable, and M. Lentczner, “Macaroons:
Cookies with contextual caveats for decentralized authorization in the cloud,” in Network and
Distributed System Security Symposium (NDSS), 2014.

[50] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke, “A core calculus of dependency,” in Proc. 26th

ACM Symposium on Principles of Programming Languages (POPL), Jan. 1999, pp. 147–160.

[51] D. Garg and F. Pfenning, “Non-interference in constructive authorization logic,” in Proc. 19th IEEE
Computer Security Foundations Workshop, 2006.

[52] M. Y. Becker, “Information flow in trust management systems,” Journal of Computer Security, vol. 20,
no. 6, pp. 677–708, 2012.

[53] J. W. Bryans, M. Koutny, L. Mazaré, and P. Y. Ryan, “Opacity generalised to transition systems,”
International Journal of Information Security, vol. 7, no. 6, pp. 421–435, 2008.

[54] N. Broberg and D. Sands, “Paralocks—role-based information flow control and beyond,” in Proc. 37th

ACM Symposium on Principles of Programming Languages (POPL), Jan. 2010.

[55] A. Nanevski, A. Banerjee, and D. Garg, “Verification of information flow and access control policies
with dependent types,” in Proc. IEEE Symp. on Security and Privacy, 2011, pp. 165–179.

32

http://dl.acm.org/citation.cfm?id=2510409
http://dl.acm.org/citation.cfm?id=2510409
http://research.microsoft.com/apps/pubs/default.aspx?id=70334
http://research.microsoft.com/apps/pubs/default.aspx?id=70334
http://dl.acm.org/citation.cfm?id=605438
http://dl.acm.org/citation.cfm?id=605438
http://dl.acm.org/citation.cfm?id=605438
http://dl.acm.org/citation.cfm?id=829514.830539
http://dl.acm.org/citation.cfm?id=829514.830539
http://theory.stanford.edu/~ataly/Papers/macaroons.pdf
http://theory.stanford.edu/~ataly/Papers/macaroons.pdf
http://theory.stanford.edu/~ataly/Papers/macaroons.pdf
http://dl.acm.org/citation.cfm?id=292555
http://dl.acm.org/citation.cfm?id=292555
http://dl.acm.org/citation.cfm?id=1155684
http://dl.acm.org/citation.cfm?id=1155684
http://dl.acm.org/citation.cfm?id=1706349
http://dl.acm.org/citation.cfm?id=1706349
http://dl.acm.org/citation.cfm?id=2006764
http://dl.acm.org/citation.cfm?id=2006764

[56] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell, “Disjunction category labels,” in Proceedings of
the 16th Nordic conference on Information Security Technology for Applications, 2011, pp. 223–239.

A Operational semantics of Fλ

〈e, σ〉 α−→ 〈e′, σ′〉

[E-IFTRUE]
σH; `; pc→ ` p < q

〈if p<q with ` at pc then e1 else e2, σ〉
pc(p,q,`)−−−−−→ 〈e1, σ′〉

[E-IFFALSE]
σH; `; pc→ 0 p < q

〈if p<q with ` at pc then e1 else e2, σ〉
pc(p,q,`)−−−−−→ 〈e2, σ〉

[E-TRUST]
H′ = σH[r 7→ σH(r), (p<q, `)]

〈p trust q with ` at r, σ〉 r(+,p,q,`)−−−−−−→ 〈(), 〈H′;σM 〉〉

[E-REVOKE]
H′ = [r 7→ rev(σH, r, p<q, `) | σH; pc; ` r < pc→]

〈p revoke q with ` at pc, σ〉 pc(−,p,q,`)−−−−−−−→ 〈(), 〈H′;σM 〉〉
[E-RELABEL] 〈relabel v `, σ〉 ·−→ 〈v, σ〉

[E-DEREF] 〈!mτ@a, σ〉 mτ@a−−−−→ 〈σM (mτ@a), σ〉 [E-ASSIGN] 〈mτ@a := v, σ〉 (mτ@a,v)−−−−−−→ 〈(), 〈σH, σM [mτ@a 7→ v]〉〉

[E-ALLOC]
m = newloc(σM)

〈refτ@av, σ〉 (mτ@a,v)−−−−−−→ 〈mτ@a, 〈σH, σM [mτ@a 7→ v]〉〉

[E-APPLY] 〈(λ(x :τ)[D ; pc]. e) v, σ〉 ·−→ 〈e[v/x], σ〉 [E-CONTEXT]
〈e, σ〉 α−→ 〈e′, σ′〉

〈E[e], σ〉 α−→ 〈E[e′], σ′〉

rev(H, r, p<q, `) ,
H(r)− {(p<q, `′) ∈ H(r) | H; pc; ` ` v `′}

33

www.scs.stanford.edu/~dm/home/papers/stefan:dclabels.pdf
www.scs.stanford.edu/~dm/home/papers/stefan:dclabels.pdf

B Fλ typing rules

Γ ;D ; pc ` e : τ

[T-INT] Γ ;D ; pc ` n : int⊥ [T-UNIT] Γ ;D ; pc ` () : unit⊥ [T-VAR]
x :τ ∈ Γ

Γ ;D ; pc ` x : τ

[T-LOC]
FV (τ@a) = ∅

Γ ;D ; pc ` mτ@a : (τ@a ref)⊥
[T-REF]

Γ ;D ; pc ` e : τ pc v τ τ v a
Γ ;D ; pc ` refτ@ae : (τ@a ref)⊥

[T-DEREF]
Γ ;D ; pc ` e : (τ@a ref)` pc t ` v a

Γ ;D ; pc `!e : τ t `

[T-ABS]
Γ, x :τ ′ ;D′ ; pc′ ` e : τ

Γ ;D ; pc ` λ(x :τ ′)[D′ ; pc′]. e : ((x :τ ′)
D′ ; pc′−−−−→ τ)⊥

[T-ASSIGN]
Γ ;D ; pc ` e1 : (τ@a ref)` Γ ;D ; pc ` e2 : τ pc t ` v τ pc t ` v a

Γ ;D ; pc ` e1 := e2 : unit⊥

[T-PRIN1]
Γ ;D ; pc ` p : prin`

Γ ;D ; pc ` pπ : prin`
[T-PRIN2]

Γ ;D ; pc ` p1 : prin`1 Γ ;D ; pc ` p2 : prin`2

Γ ;D ; pc ` p1 ⊕ p2 : prin`1t`2

[T-SUB]
Γ ;D ; pc ` e : β` Γ ` β ≤ β′ ` v `′

Γ ;D ; pc ` e : β′`′

[T-APPLY]
Γ ;D ; pc ` e1 : ((x :τ ′)

D′ ; pc′−−−−→ τ)′` D ` D′[`/x] pc t `′ v pc′ Γ ;D ; pc ` ` : τ ′[`/x]

Γ ;D ; pc ` e ` : τ [`/x] t `′

[T-TRUST]
Γ ;D ; pc ` `i : prin`′i i ∈ {1, 2, 3, 4}

⊔
i
`′i t pc v `3 `4 < `3

Γ ;D ; pc ` `1 trust `2 with `3 at `4 : unit⊥

[T-REVOKE]
Γ ;D ; pc ` `i : prin`′i i ∈ {1, 2, 3, 4}

⊔
i
`′ t pc v `3 `4 < `3

Γ ;D ; pc ` `1 revoke `2 with `3 at `4 : unit⊥

[T-RELABEL]
Γ ;D ; pc ` e : β` [c 7→ D]; pc; `′ ` v `′

Γ ;D ; pc ` relabel e `′ : β`′

[T-IF]

Γ ;D ; pc ` `i : prin`′i i ∈ {1, 2, 3, 4}

⊔
i
`′i t pc v `4 Γ ;D, (`1<`2, `3) ; `3 t `4 ` e1 : τ Γ ;D ; `3 t `4 ` e2 : τ

Γ ;D ; pc ` if `1<`2 with `3 at `4
then e1 else e2

:
⊔

i
`′i t `3 t τ

The rule APP contains the judgmentD ` D′[`/x] which means that for each entry (p<q, `) ∈ D′[`/x] we haveD;>→ ∧ ⊥←; ` `
p < q. This ensures the delegations of D’ are derivable from D without relabeling.

34

C ARBAC methods
User–role assignment.

assignUser(a, u, r, pc, `){
if ∃(ar, cr,mn,mx) ∈ can assign
such that

H; c; pc; ` a < ar

H; c; pc; ` ∧ ar← u < cr
H; c; pc; ` ∧ ar← r < mn
H; c; pc; ` ∧ ar← mx < r

then

let `′ = (pc t `) ∧ (ar ∧ r)←

H := H ∪ [c 7→ (u < r, `′)]

}

Authorize a’s assignment of role r to user u. If
the FLAM judgments hold, a delegation u < r
is created with the integrity of ar and r.

revokeUser(a, u, r, pc, `){
if ∃(ar,mn,mx) ∈ can revoke
such that

H; c; pc; ` ∧ ar← a < ar
H; c; pc; ` ∧ ar← r < mn
H; c; pc; ` ∧ ar← mx < r

then

let `′ = (pc t `) ∧ (ar ∧ r)←

H :=
⋃

c∈dom(H)

[c 7→ rev(H, c, u < r, `′)]

}

Authorize a’s revocation of u’s membership in
role r. If the FLAM judgments hold, all delega-
tions (u < r, `′′) where `′ v `′′ are revoked.

Permission–role assignment.

assignPermission(a, p, r, pc, `){
if ∃(ar, cr,mn,mx) ∈ can assignp
such that

H; c; pc; ` a < ar

H; c; pc; ` ∧ ar← p < cr
H; c; pc; ` ∧ ar← r < mn
H; c; pc; ` ∧ ar← mx < r

then

let `′ = (pc t `) ∧ (ar ∧ p)←

H := H ∪ [c 7→ (r < p, `′)]

}

Authorize a’s grant of permission p to role r. If
the FLAM judgments hold, a delegation r < p
is created with the integrity of ar and p.

revokePermission(a, p, r, pc, `){
if ∃(ar,mn,mx) ∈ can revokep
such that

H; c; pc; ` ∧ ar← a < ar
H; c; pc; ` ∧ ar← r < mn
H; c; pc; ` ∧ ar← mx < r

then

let `′ = (pc t `) ∧ (ar ∧ p)←

H :=
⋃

c∈dom(H)

[c 7→ rev(H, p, r < p, `′)]

}

Authorize a’s revocation of permission p for role
r. If the FLAM judgments hold, all delegations
(r < p, `′′) where `′ v `′′ are revoked.

35

Role–role assignment.

addToRange(a,mn,mx, r, pc, `){
if ∃(ar,mn,mx) ∈ can modify
such that

r 6= mn and r 6= mx

H; c; pc; ` ∧ ar← a < ar
then

let `r = (pc t `) ∧ (ar ∧ r)←

let `mn = (pc t `) ∧ (ar ∧mn)←

H := H ∪ [o 7→ (mx < r, `r), (r < mn, `mn)]

}

Authorize a’s addition of r to range [mn,mx].
If the FLAM judgments hold, two delegations
are created: mx < r with the integrity of ar and
r, and r < mn with the integrity of ar and mn.

removeFromRange(a,mn,mx, r, pc, `){
if ∃(ar,mn,mx) ∈ can modify
such that

r 6= mn and r 6= mx

H; c; pc; ` ∧ ar← a < ar
then

let `r = (pc t `) ∧ (ar ∧ r)←

H :=
⋃

c∈dom(H)

[c 7→ rev(H, p,mx < r, `r)]

let `mn = (pc t `) ∧ (ar ∧mn)←

H :=
⋃

c∈dom(H)

[c 7→ rev(H, p, r < mn, `mn)]

}

Authorize a’s removal of r from range
[mn,mx]. If the FLAM judgments hold, two
revocations occur: (mx < r, `′r) where `r v `′r
and (r < mn, `′mn) where `mn v `′mn.

addAsSenior(a, r, s, pc, `){
if ∃(ar,mn,mx) ∈ can modify
such that

H; c; pc; ` a < ar

H; c; pc; ` ∧ ar← r < mn
H; c; pc; ` ∧ ar← mx < r
H; c; pc; ` ∧ ar← s < mn
H; c; pc; ` ∧ ar← mx < s

then

let `′ = (pc t `) ∧ (ar ∧ s)←

H := H ∪ [c 7→ (r < s, `′)]

}

Authorize a’s addition of r as a senior to s.

removeAsSenior(a, r, s, pc, `){
if ∃(ar,mn,mx) ∈ can modify
such that

H; c; pc; ` a < ar

H; c; pc; ` ∧ ar← r < mn
H; c; pc; ` ∧ ar← mx < r
H; c; pc; ` ∧ ar← s < mn
H; c; pc; ` ∧ ar← mx < s

then

let `′ = (pc t `) ∧ (ar ∧ s)←

H :=
⋃

c∈dom(H)

[c 7→ rev(H, p, r < s, `′)]

}

Authorize a’s removal of r as a senior to s.

rev(H, c, p < q, `) , H(c)− {(p < q, `′) ∈ H(c) | H; c; pc; ` ` v `′}

Revocation operation. ReturnsH(c) with delegations (p < q, `′) where ` v `′ removed.

36

D Acts-for proof search algorithm

1 function actsForProof(ActsForQuery query, ProofSearchCache cache):
2 input: query - the acts-for relationship being queried

3 cache - initially empty; caches intermediate results obtained during the proof

search

4 returns: a ProofSearchResult, containing a result type (PROVED, PRUNED, or FAILED)

5 and some optional data (a proof for PROVED results, or a progress condition

for PRUNED results)

6
7 // Check the cache.

8 if cache has cached result for query: return cached result

9
10 // Cache miss. Put a placeholder result for the query in the cache (to avoid infinite

recursion).

11 update(cache, query, PRUNED, query)

12
13 // Search for a proof.

14 ProofSearchResult result ← findActsForProof(query, cache)

15 update(cache, query, result.type, result.data)

16 return result

17
18 function findActsForProof(ActsForQuery query, ProofSearchCache cache):
19 // A boolean formula expressing the conditions for making further progress on this

proof, in the

20 // event the search is pruned.

21 ProgressCondition progressCondition ← False

22
23 for each applicable rule instance r:

24 // ⊥ is a special boolean formula that is an identity with respect to both
conjunction and

25 // disjunction.

26 ProgressCondition ruleConditions ← ⊥
27 boolean success ← true

28 list subproofs ← []

29
30 for each premise p in r:

31 ProofSearchResult subqueryResult ← actsForProof(p, cache)

32 if subqueryResult.type = PROVED: add subqueryResult.proof to subproofs

33 else:

34 success ← false

35 if subqueryResult.type = PRUNED:

36 ruleConditions ← ruleConditions ∧ subqueryResult.progressCondition
37 else if subqueryResult.type = FAILED:

38 ruleConditions ← ⊥
39 break

40
41 if success:

42 return new ProofSearchResult(type ← PROVED, data ← new Proof(r, subproofs))

43
44 progressCondition ← progressCondition ∨ ruleConditions
45
46 // No proof found.

47 if progressCondition = False:

48 return new ProofSearchResult(type ← FAILED)

49
50 return new ProofSearchResult(type ← PRUNED, data ← progressCondition)

37

	Introduction
	Motivating examples
	Delegation loopholes
	Poaching attacks
	Leaking information via authorization
	Vulnerabilities in other DIFC systems

	Unifying principals and policies
	Authority projections
	The information flow ordering
	Owned principals
	FLAM normal form

	Secure reasoning with dynamic trust
	System model and trust configuration
	Flow-limited judgments
	Robust derivations
	Speaking for other principals
	Rules for flow-limited reasoning

	Robust authorization
	FLAM prototype
	Efficient flow-limited query processing
	Example: ARBAC97 Access Control

	Robust authorization with F
	Operational semantics of F
	F type system
	Example: implementing screening policies

	Related work
	Conclusions
	Operational semantics of F
	F typing rules
	ARBAC methods
	Acts-for proof search algorithm

