
Secure Autonomous Cyber-Physical Systems
Through Verifiable Information Flow Control

Jed Liu∗
Barefoot Networks
Ithaca, NY, USA

liujed@cs.cornell.edu

Joe Corbett-Davies
Cornell University
Ithaca, NY, USA

jwc292@cornell.edu

Andrew Ferraiuolo
Cornell University
Ithaca, NY, USA

af433@cornell.edu

Alexander Ivanov
Cornell University
Ithaca, NY, USA
aii4@cornell.edu

Mulong Luo
Cornell University
Ithaca, NY, USA

ml2558@cornell.edu

G. Edward Suh
Cornell University
Ithaca, NY, USA

suh@csl.cornell.edu

Andrew C. Myers
Cornell University
Ithaca, NY, USA

andru@cs.cornell.edu

Mark Campbell
Cornell University
Ithaca, NY, USA

mc288@cornell.edu

ABSTRACT
Modern cyber-physical systems are complex networked computing
systems that electronically control physical systems. Autonomous
road vehicles are an important and increasingly ubiquitous instance.
Unfortunately, their increasing complexity often leads to security
vulnerabilities. Network connectivity exposes these vulnerable sys-
tems to remote software attacks that can result in real-world physi-
cal damage, including vehicle crashes and loss of control authority.

We introduce an integrated architecture to provide provable se-
curity and safety assurance for cyber-physical systems by ensuring
that safety-critical operations and control cannot be unintention-
ally affected by potentially malicious parts of the system. Fine-
grained information flow control is used to design both hardware
and software, determining how low-integrity information can affect
high-integrity control decisions. This security assurance is used
to improve end-to-end security across the entire cyber-physical
system. We demonstrate this integrated approach by developing a
mobile robotic testbed modeling a self-driving system and testing
it with a malicious attack.

ACM Reference Format:
Jed Liu, Joe Corbett-Davies, Andrew Ferraiuolo, Alexander Ivanov, Mu-
long Luo, G. Edward Suh, Andrew C. Myers, and Mark Campbell. 2018.
Secure Autonomous Cyber-Physical Systems Through Verifiable Informa-
tion Flow Control. InWorkshop on Cyber-Physical Systems Security & Privacy
(CPS-SPC ’18), October 19, 2018, Toronto, ON, Canada. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3264888.3264889

1 INTRODUCTION
The modern world is increasingly populated by networked devices
with high-performance computing, complex sensors, and signifi-
cant physical actuation components [44]. This is especially true of

∗Work done while at Cornell

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CPS-SPC ’18, October 19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5992-4/18/10. . . $15.00
https://doi.org/10.1145/3264888.3264889

automotive systems, which increasingly include not only Internet
connectivity, but also autonomous driving capabilities. Network
connectivity brings convenience, such as entertainment, maps, and
traffic reports. But it can also bring remote attacks. Unlike tradi-
tional computing systems, attacks on safety-critical cyber-physical
systems can also result in real-world physical damage. Vehicles and
other systems can cause significant physical harm if they are mali-
ciously compromised, so it is becoming more important to secure
cyber-physical systems.

The new capabilities in networked cyber-physical systems de-
mand more complex infrastructure and algorithms, and often lead
to new security flaws [51]. For example, recent studies of mod-
ern automobiles have revealed attack surfaces across infotainment,
wireless Internet, and diagnostics components, allowing an attacker
to remotely control steering, brake, and throttle [11, 35]. With the
widespread development and increased deployment of driver as-
sistance and self-driving features [9], we can soon expect greater
vehicle connectivity, more sensing modalities, a larger volume of
data from external sources, and a higher degree of automated ac-
tuator control. Similar security concerns exist for other types of
safety-critical cyber-physical systems. For instance, in Boeing’s 787
Dreamliner aircraft, the avionics systems are on the same network
as passenger Wi-Fi networks [65].

We propose a new approach to building cyber-physical systems
with high security assurance, through integrated co-development
of three layers of the system—hardware, software, and control al-
gorithms. Because security is a system-level property, traditional
single-layer protection is not enough. Even systems with perfectly
secure hardware and software may be compromised if control al-
gorithms cannot properly handle malicious inputs [41]. Similarly,
even perfectly secure algorithms can be compromised if there ex-
ist vulnerabilities in underlying hardware or software layers. We
incorporate protection mechanisms for hardware, software, and
control algorithms to instantiate a novel system architecture for
secure autonomous vehicles.

A key technical ingredient is the use of security-typed program-
ming languages to develop different system layers securely, in-
cluding both software and hardware. We build on security-typed
languages that enforce information-flow policies at compile time us-
ing type annotations [48]. Languages such as Jif [38] and SPARK [6]
have been used to enforce separation of information with differing

https://doi.org/10.1145/3264888.3264889
https://doi.org/10.1145/3264888.3264889

confidentiality and integrity levels. These languages are highly ro-
bust to many classes of attacks commonly used to take control of
cyber-physical systems. Similarly, modern hardware design tech-
niques can produce processor architectures that prevent or limit
any interference between one (possibly untrusted) process and an-
other running on the same processor [16]. Combining these kinds
of modern information security techniques at the system-design
level is critical for the safety of cyber-physical systems.

We have implemented a prototype of the proposed protection ar-
chitecture on amobile robotic platform that emulates lane-following
behavior by traversing a track. As the robot moves, it downloads
external map information, as is prevalent in modern self-driving
cars [34]. Experimental results are presented from a simulated re-
mote attack, in which an untrusted map server on the Internet has
been compromised. To defend against the attack, a map-verification
algorithm verifies the map data before it is used by the robot’s path
planner. The planner and map verifier are developed in Jif, which
enforces information flow control at the language level, thereby
ensuring that only verified map data can reach the planner. We
have also designed and verified a secure processor for providing
strong isolation assurance for the planner, map verifier, and other
safety-critical software in the system. The processor is not yet inte-
grated into the prototype, but evaluation of the processor suggests
an overall performance overhead for the strong isolation, including
removal of timing interference, can be low: about 12%.

The prototype demonstrates that the integrated protection ar-
chitecture is indeed viable in practice.Analysis of the architecture
also suggests that the integrated protection approach can han-
dle a wide range of vulnerabilities across algorithmic, software,
and hardware layers. In fact, the threat analysis shows that the
vertically-integrated protection across the layers is necessary in
order to protect a system from a wide range of security attacks.

The rest of the paper is organized as follows. Section 2 discusses
our threat model and defense strategies. Section 3 introduces an
integrated system architecture for secure autonomous CPS, which
include protection in algorithmic, software, and hardware layers.
Section 4 describes our prototype of the proposed system archi-
tecture on a Segway-based robotic platform and our experiences
with the prototype platform. Section 5 evaluates the effectiveness
and the overhead of the proposed protection approaches. Section 6
discussed related work, and Section 7 concludes the paper.

2 THREAT MODEL
To make the security problems concrete, we focus on attacks that
can arise in the context of autonomous vehicles, where we presume
that the attacker’s goal is to cause unsafe vehicle behavior by influ-
encing safety-critical control decisions through untrusted inputs.
Figure 1 summarizes potential security threats to the safe operation
of an autonomous vehicle, and outlines our defense strategies for
those threats that we address. Our goal is to defend the vehicle
against remote adversaries who lack direct hardware access, but
who can communicate with the vehicle over the network and can
affect a subset of local sensor inputs through spoofing or environ-
mental tampering.

We assume that the adversary can control untrusted network
inputs, which the vehicle might use for safety-critical decisions.

Threat description Covered? Defense strategy

Physical attacks on vehicle

Directly tamper with
vehicle hardware No —

Remote software attacks through the network

Maliciously modify
network inputs to
safety-critical controller

Yes Input verification using local
sensors (§3.1)

Exploit user-level software
bugs that allow untrusted
inputs to unintentionally
affect safety-critical
decisions

Yes
Memory-safe language with
language-based information
flow control (§3.2)

Slow down safety-critical
software through
hardware-level interference

Yes Timing interference control
in hardware (§3.3)

Exploit OS-level bugs to
break software isolation Yes Formally verified

microkernel OS ([26])
Exploit hardware bugs to
break software isolation Yes Formally verified hardware

information flow (§3.3)

Sensor and environmental attacks

Maliciously affect a subset
of sensor inputs Yes Validation using multiple

sensors and inputs (§3.1)
Maliciously affect all sensor
inputs together No —

Figure 1: Summary of threats and defenses.

For example, if the vehicle downloads maps from the Internet, the
adversary might try to influence the vehicle’s route by providing
incorrect maps.

The adversary can also provide malicious network inputs to
trigger bugs in software or hardware. For example, the adversary
can provide malformed map data to try to exploit vulnerabilities
in the vehicle’s parsing (or other handling) of that data in order to
have software mistakenly use untrusted inputs in making safety-
critical decisions. For critical, trusted software, our system uses
language-level information flow control to prevent such attacks.

The adversary may take over a less-trusted, user-level software
component, such as an infotainment system. To model this kind of
attack, we assume that the adversary already controls all untrusted
software components on the vehicle. The adversary might use
this control to interfere with the operation of the vehicle’s trusted
software components through a hardware-level denial-of-service
(DoS) attack. For instance, the attacker might try to slow down
critical control tasks via contention for hardware resources such
as caches, on-chip interconnects, and memory (DRAM) channels.
In fact, maliciously creating heavy memory traffic on a multi-core
processor can cause other programs to slow down by an order of
magnitude [37]. Such timing attacks can cause delays in crucial
data processing, which may have crippling effects on control and
estimation algorithms, thereby compromising the safe operation of
a vehicle. For example, a collision-avoidance mechanism will not
be useful if its response is delayed and triggered after a collision.

After taking control of untrusted software on the vehicle, the
adversary may also try to exploit bugs in an operating system
or hardware in order to influence trusted software. Software vul-
nerabilities in a complex operating system have been commonly
exploited in traditional software attacks. To prevent such attacks,
we assume that the operating system on the vehicle is hardened to
ensure strong separation among software components (e.g., with a
formally verified microkernel [26]).

Recent attacks such as Meltdown [30] and Spectre [27] suggest
that hardware-level vulnerabilities can also be exploited to break
system security. Processor errata often include security bugs [23],
and there have been vulnerabilities in implementations of Intel VT-d
and system management mode (SMM) [58, 59]. Vulnerabilities are
also found in safety-critical hardware, including an exploitable bug
in the Actel ProASIC3 [52], which has been used in medical, auto-
motive, aerospace, and military applications, including the Boeing
787 Dreamliner aircraft. By formally verifying information flow
in hardware, we can prevent hardware-level bugs from violating
software isolation.

Finally, we assume that the adversary can manipulate sensor
inputs (e.g., GPS, LIDAR, cameras) to attempt to influence the vehi-
cle’s control algorithms. For example, the adversary might spoof
GPS signals to cause the vehicle’s navigation system to report its
location inaccurately, or erect billboards along the route that de-
feat the vehicle’s vision algorithms. In general, we assume that the
adversary does not have total control over all sensors and inputs,
as no defense is possible against an adversary so powerful that it
can place the vehicle in a self-consistent virtual world [15]. The
following are some examples of attacks on sensors and inputs that
we defend against.
• In a map poisoning attack [41], a vehicle is served a mali-
ciously modified map by an untrusted map server on the
network. In the absence of our security mechanisms, this
map could cause the vehicle to navigate to the wrong des-
tination or off the road [25]. One way to defend against
this attack is to use GPS and vision, or other scene-sensor
information.
• GPS spoofingmight cause the vehicle to drive off the road [64].
Map data and vision, or other scene-sensor information can
be used to defend against this attack.
• Radar, LIDAR, and camera inputsmight be blinded or spoofed
to cause the vehicle to ignore obstacles, resulting in colli-
sions [42]. We assume that at least one obstacle detection
system is not compromised by the attacker.

3 SYSTEM ARCHITECTURE
We introduce a general system architecture, illustrated in Figure 2,
for securing autonomous cyber-physical systems. Sensors and ex-
ternal information form the external attack surface for the threats
described previously. Therefore, this input to the system is, in gen-
eral, a mix of trusted and untrusted information, represented by the
multicolored arrows in the figure. Our approach integrates three
key features to secure these autonomous cyber-physical systems:
• Input verification, collision-avoidance software. Sensors and
other inputs are cross-validated in the Verification block of
Figure 2 to detect adversarial manipulation. If an attack is

detected, untrusted information is prevented from reaching
subsequent software blocks. Future work will generalize this
concept to define a label about how much the passed infor-
mation is untrusted, which would aid the other blocks in
reasoning about the incoming information. The Path/Con-
trol block is designed to use trusted information to plan a
collision-free path to ensure the safe operation of the vehicle.
• Software-level information flow control and verification. Sen-
sor verification, path planning, collision avoidance, and other
safety-critical software components are implemented in a
memory-safe, security-typed programming language to pro-
tect their integrity. Language-level information flow control
ensures that untrusted sensors and inputs cannot be used for
safety-critical operations without explicit verification and
endorsement.
• Verified hardware platform for information flow control. All
trusted, safety-critical software components are executed
on a secure processor that we have developed. The proces-
sor controls information flows, including timing interfer-
ence, and is formally verified with a hardware-level security
type system co-developed with the processor. By executing
trusted software components on the secure processor, we
protect these components from interference by less-trusted
software that may be under the control of the adversary.
The processor also supports new instructions that enable the
software level to communicate information flow policies to
the hardware level for control of information flows across
the software–hardware boundary.

Implementing a cyber-physical system with this architecture im-
proves security, but adds costs for development effort and run-time
performance. These costs are explored in Section 5.

3.1 Sensor verification and safety analysis
Autonomous vehicles require many sources of information, rang-
ing from raw sensors to external networked services such as map
servers. As shown in Figure 2, our architecture includes a verifi-
cation step for all of these inputs, and prevents unverified inputs
from tainting the operation of the system.

Our approach is to design the system with redundant inputs
across multiple sensor modalities, and to leverage this redundancy
to verify each input against the others. For example, to verify a
vision detector of objects such as other cars, LIDAR and radar mea-
surements can be used. Information identified as being corrupted is
stopped at the verification step, and is prevented from propagating
further in the software pipeline. Instead, a signal is sent that indi-
cates what information is corrupted. These signals are then used
to activate specific safe protocols in subsequent sensor blocks. For
example, the Tactical planner requires the use of map data. But if
the map data is corrupted, this fact is passed to the Tactical planner,
which in turn activates a standard safe plan requiring no map data,
such as safely pulling off to the side of the road.

The general question of how to detect and compensate for com-
promised sensors and maps in a computationally efficient manner
is still open to research. However, statistical analysis seems to be a
key component, because real-world environments and sensors are
inherently stochastic: spurious sensor measurements occur even in

Sensors

Pose: GPS, IMU, odom/wind, …

Environment: lidar, radar, vision, … Verification

Perception

Pose

Scene

Planning

Tactical

Path/Control

raw
sensors/

info
probabilistic

belief
verified
sensors/

info
vehicle
controls

communications

TRUSTED
UNTRUSTED
TRUST DATA/LABEL

External Information

Critical: maps, coordination, etc.

Non-Crit: entertainment, services, … Entertainment
Services

VERIFIED HARDWARE

UNVERIFIED HARDWARE

Figure 2: Autonomous CPS system architecture, with trusted and untrusted components, trust labels, and verified hardware.

the absence of an attacker. Hypothesis testing [61] is a statistical
analysis primarily used to identify spurious sensor measurements
rather than identifying malicious attacks. Some recent work [40]
has analyzed the methods and conditions under which malicious
sensors can be detected. These approaches use optimization to lo-
cate potentially malicious sensors, while assuming stochastic noise
is bounded. This optimization problem can become intractable be-
cause the number of possible failure scenarios is exponential in
the number of sensors. Instead, we exploit statistical properties to
perform multivariate hypothesis testing.

In this work, a key question we ask is whether a piece of in-
formation yyy, such as a measurement, is consistent with known
(or expected) information ŷyy. More formally, the null hypothesis is
defined asyyy matching a Gaussian model, or

H0 : yyy ∼ N(ŷyy, Σ)

where Σ is the covariance. In this case, the null hypothesis implies
that a particular sensor or map is trustworthy, since a robot cannot
begin to act if all of its information starts off as untrusted. The alter-
nate hypothesis is the case whereyyy does not match our Gaussian
model. We model the alternate hypothesis via an uninformative
uniform distribution:1

H1 : yyy ∼ U
The likelihood ratio is then used to define a test statistic:

Λ =
p(yyy |H1)

p(yyy |H0)
> Λ0 (1)

Given the above likelihoods, this can be simplified:

p
(
(yyy − ŷyy)T Σ−1(yyy − ŷyy)|H0

)
∼ χ2(ny) (2)

The test statistic is a χ2 random variable withny degrees of freedom,
and can be used for statistically rigorous evaluations. For example,
we might classifyyyy as untrusted when there is a less than 2% chance
thatyyy is consistent with the other information ŷyy.

This hypothesis-testing approach can be viewed as rigorous
anomaly rejection. Whereas in machine learning, the confidence of
an estimate depends on the training data and may have no rigorous
probabilistic meaning, hypothesis testing offers added structure
that allows for a rigorous interpretation of the likelihood of a false
positive or a false negative. Current research focuses on machine
1 Non-uniform distributions could be used to capture more complex a priori attacks;
this is an area of future work.

learning concepts that capture uncertainty rigorously, and a future
research topic is to integrate these into our framework.

3.2 Software-level information flow control
To help prevent vulnerabilities in their implementation, we write
the path planner, collision avoidance, and other safety-critical func-
tions in Jif [38], a security-typed language based on Java. Jif inherits
memory safety from Java, eliminating a large class of low-level soft-
ware vulnerabilities, such as buffer overruns and dangling pointers.
Not only is this important for protecting the execution of Jif pro-
grams, it also prevents subversion of Jif’s own security mechanisms.

Additionally, Jif enforces information flow security. Jif programs
contain annotations (labels) that express policies for confidentiality
and integrity. Security is enforced both at compile time and run
time: the compiler checks that every flow of information through a
program either statically conforms to the labels in the program, or
has a run-time check proving that the flow is secure.

Labels are part of types in Jif. The label in the type of a variable (or
expression) restricts the information that may affect the value of the
variable. When flow from label L1 to label L2 is secure, we say that
L1 flows to L2 and write L1 ⊑ L2. Information flows in the program
are secure if they respect this information-flow ordering. As part
of type-checking programs, the Jif compiler checks all information
flows accordingly. For example, an assignment of the form x = y
causes the compiler to check that L(y) ⊑ L(x), where L(x) is the
label of the variable x .

Jif also supports a notion of downgrading, in which sufficiently
trusted code can relax the usual rules for information flow. For
example, when the map is verified, run-time language-level en-
dorsement [62] is used in our prototype to allow the map to be
considered by the secure planner. Jif’s enforcement ensures that
this endorsement is the only way for untrusted information to affect
trusted computations. Endorsements in Jif are readily identified
by the endorse keyword, which facilitates security audits of Jif
programs.

3.3 Verified hardware for software isolation
In order to ensure that processor hardware securely isolates safety-
critical software from untrusted software, we augment a mod-
ern processor architecture with mechanisms for strong control
of hardware-level information flow including timing interference,

and verify the processor implementation using static information
flow analysis at the hardware description language (HDL) level.
For this hardware-level protection, we add hardware tags to the
processor that explicitly indicate the current security domain of
a processor core, each register, and a physical memory page. The
security tag is also attached to each memory access so that timing
interference in a shared memory hierarchy can be removed. The in-
struction set architecture (ISA) is augmented to let trusted software
(such as a microkernel) manage the hardware security tags. We
implemented the tagged architecture as an extension to the RISC-V
Rocket processor [5], which supports a complete RISC-V ISA with
all the necessary features to run an operating system. The details of
the secure processor design can be found in a separate paper [17].

To remove microarchitecture timing interference, we statically
allocate resources to different security domains so that the exe-
cution time of software running in one security domain is not
affected by software in another security domain. We refer to secu-
rity domains with timing isolation as timing compartments. Spatial
partitioning removes contention by duplicating or partitioning a
resource for each security domain. For example, shared caches can
be partitioned so that only a subset of cache ways can be used by
each security domain. Temporal partitioning removes contention by
time-multiplexing resources among security domains, with a fixed
schedule. For example, on-chip interconnect and DRAM memory
channels use the fixed time-multiplexing so that memory accesses
from one security domain is not affected by accesses from other
domains. Static resource allocation completely removes timing in-
terference, and makes a processor design simple to analyze for
security verification.

For verification, we used the security type system from SecVer-
ilog [67], a secure design language that extends Verilog (a popular
HDL) with a security type system. SecVerilog has syntax for an-
notating variables (wires and registers) with security labels, and
allows hardware designers to formally verify information flow secu-
rity properties of their designs. This verification is timing-sensitive
and ensures that timing interference among security domains is
removed in the processor implementation. The Rocket processor is
implemented in Chisel. To check our modified design, we ported
SecVerilog’s security type system to Chisel, and formally verified
that our prototype processor enforces strict, timing-sensitive non-
interference.

4 IMPLEMENTATION PROTOTYPE
To evaluate the feasibility and effectiveness of the proposed archi-
tecture, we implemented a core piece of an autonomous vehicle
system, and used it to drive a Segway-based robotic platform to
produce lane-following behavior on a single-lane track. Our aim
was to understand the benefits and challenges of an integrated
approach of combining algorithms, hardware, and software, when
building a secure autonomous cyber-physical system.

4.1 Prototype system architecture
Figure 3 shows the core component of the prototype’s architecture,
a specific instantiation of the general architecture we proposed in
Figure 2. The system receives map data from an untrusted map

Lane center
Lane width
Landmark locations

Map server (UNTRUSTED)

Landmark range
& bearing

Camera (TRUSTED)

x, y, heading, velocity

Vicon (TRUSTED)

goal (x, y)

Waypoint (TRUSTED)

Local occupancy grid
(obstacles)

LIDAR (TRUSTED)

Map
verification

Map-based
planner

Verified
map

Sensor-only
planner

Path
switch

Verified?

Paths

Safe path

ZedBoard

Figure 3: Architecture of the prototype system. Green and
red arrows represent trusted and untrusted information
flows, respectively.

server on the Internet. A map-verification module verifies the un-
trusted map using trusted sensor information. If the map is success-
fully verified, it is explicitly endorsed for use in the path planning
computation. If verification fails, the untrusted map cannot be used
in trusted computations, and the path planner falls back to a plan
generated exclusively from (trusted) sensor data.

The map-verification and path-planner software are written in
Jif and run on a ZedBoard [63], a hardware development board
based on the Xilinx Zynq-7000 SoC. Currently, the Jif code executes
in a JVM running on the ZedBoard’s ARM Cortex-A9 processor.

An FPGA on the ZedBoard allows the implementation of our
secure processor on the platform. We implemented the verified
processor as an extension to the RISC-V Rocket processor [5], which
includes a pipelined in-order core with branch and branch-target
prediction, an ALU, a multi-cycle multiplier, and a floating-point
unit (FPU). The processor also includes 16-KB L1 instruction and
data caches, and instruction and data TLBs for virtual memory
support. The processor is verified with the security type system.
The processor, however, is not yet used in the integrated vehicle
platform: we are still working on a Jif compiler that targets the
chip. The primary role of the verified hardware is to provide strong
isolation assurance and does not change the functionality of the
platform. The overhead of the hardware protection is evaluated
separately in Section 5.3.

4.2 Sensors and platform hardware
The ZedBoard controls a robotic platform consisting of a differential-
drive Segway RMP50 outfitted with sensors and processing, shown
in Figure 4. On board the robot is the Segway PC, a dedicated com-
puting platform that preprocesses raw sensor data for the ZedBoard,
and performs path following on the ZedBoard’s output. In a produc-
tion implementation, this extra processing would be colocated with
map verification and path planning on a secure hardware module.
The ZedBoard in our prototype has limited processing capacity,

Map

Map Server (UNTRUSTED)

Camera Vicon
Waypoint
selection

LIDAR Path
follower

Segway PC (TRUSTED)

ZedBoard
(Figure 3)

(Wi-Fi)

(Ethernet)

Waypoint &
sensor inputs Safe path

Segway

Figure 4: Segway robotic testbed. Dashed boxes indicate sep-
arate physical computing units.

however, so we offload some computation to the Segway PC, which
we assume is trusted.

The robot uses a PointGrey Firefly camera [43] to detect visual
landmarks. Landmarks are intended to correspond to prominent
visual features in road environments, such as road signs, stop lines,
and other easily and repeatably detectable objects. These landmarks
are expected to be provided as part of the external map information,
to enable map verification using sensor-reported landmark mea-
surements. To simplify image-processing tasks in our experiments,
we use ArUco tags [20] for our landmarks. OpenCV [39] is used to
obtain the range and bearing of each tag in the camera’s field of
view, and this data is fed to the ZedBoard.

A Vicon motion-tracking system [57] provides robot-pose es-
timates and acts as a stand-in for an accurate satellite navigation
system. A 2D SICK LIDAR [50] is used for detecting obstacles. A
module on the Segway PC processes the raw LIDAR data to generate
occupancy grids [54] for the ZedBoard.

The Segway PC also has a path follower for smoothing out the
paths produced by the ZedBoard before sending wheel commands
to the Segway. Our implementation is based on the pure pursuit
algorithm [13].

4.3 Map data
An external map server provides the vehicle with a two-dimensional
map of landmarks, lane positions, and other planning information.
Each landmark location is a single point describing a sensor-visible
feature in the environment. Lane-following information is provided
as a cost overlay containing a planning cost for each grid cell in the
map. The overlay penalizes travel outside of the lane boundaries

with high planning costs, and is intended to be used in conjunction
with the occupancy grid by the path planner.

Given the size of our experimental scenarios, it would be straight-
forward to save the entiremap inmemory on the robot. Autonomous
road vehicles, on the other hand, operate in large-scale environ-
ments, and must continually download maps from an external
source [34]. We model this by providing map information dynami-
cally in segments covering the immediate area around the robot.
The robot queries the map server for new segments when it has
moved close to the edge of the current map segment.

A set of sparse map information is assumed to be present in
memory of the vehicle at all times for verification. We call this
information secure sparse map data, and is a much more scalable
approach than saving all map data on-board.

4.4 Path planner
As an abstraction of a vehicle path planner, the Jif code on the
ZedBoard implements an A* algorithm [22] to plan coarse paths,
which are then given to the path follower on the Segway PC. Prede-
fined waypoints along the lane are used sequentially as the planner
goal. Both the cost overlay from the map and the occupancy grid
of nearby obstacles contribute to the complete planning cost func-
tion. As the A* algorithm searches for the lowest-cost path, this
cost function encodes a preference for lane following and obstacle
avoidance in the planner.

4.5 Map verifier
We treat the external map server as potentially untrusted, so in order
to use the map for planning, we require independent verification
of the streaming detailed map information against local sensor
data and the secure sparse map data. To achieve this, we assume a
Gaussianmeasurement distribution around each expected landmark
location, as reported by the map, and assess the agreement with
local sensor measurements using a statistical hypothesis test.

First, we calculate the test statistic for a given sensor measure-
mentyyy ∈ R2 of a landmark, in map coordinates:

Λ = (yyy −mmm0)
T ΣΣΣ−1 (yyy −mmm0)

wheremmm0 is the map-reported landmark location. The covariance
is assumed to be circular:

ΣΣΣ =
(
σ + α

mmm0 − xxx
robot

) III
wherexxxrobot is the current position of the robot, III is the 2×2 identity
matrix, and α and σ are parameters that encode the constant and
distance-dependent measurement noise, respectively. For a given
set of sensor measurements, the hypothesis test is repeated for
each map landmark in turn. If every hypothesis test rejects the null
hypothesis (indicating a mismatch between expected and measured
landmarks), then map verification fails, and the path planner does
not use map information.

4.6 Information flow control
We implemented the planner and map verifier in 630 lines of Jif
code.2 Supporting this are 125 lines of Jif signatures (which allow

2All reported line counts omit comments and blank lines.

1 class Map[principal T, principal U] where T ≽ U {

2 OccuGrid{U←} overlay;

3 OccuGrid{T←} verifiedOverlay;

4 }

5

6 class Verifier {

7 void verify(Map[T,U]{T←} map,

8 ARTagMeasurement{T←}[]{T←} tags) {

9 if (verifyImpl(map, tags))

10 map.verifiedOverlay = endorseOverlay(map.overlay);

11 else map.verifiedOverlay = null;

12 }

13 }

14

15 class Planner {

16 Plan{T←} plan(Point{T←} start,

17 Point{T←} goal, OccuGrid{T←} grid,

18 Map[T,U]{T←} map) {

19 // If map is unverified, use contingency.

20 OccuGrid overlay = map.verifiedOverlay;

21 if (overlay == null)

22 return contingency(start, goal, grid);

23

24 // Combine overlay into occupancy grid and do A*.

25 grid.combine(overlay);

26 return astar(start, goal, grid);

27 }

28 }

Figure 5: Jif code sketch for verifier and planner.

Jif to interface with Java) and roughly 1000 lines of Java code for
handling network communication and for Java to interface with Jif.

Figure 5 sketches three classes corresponding to the map, verifier,
and planner. On line 1, the Map class is parameterized on two prin-
cipals, T and U, which model trust levels in the system. The clause
“where T ≽ U” means T is more trusted than U. Classes Verifier
and Planner are also parameterized, but those annotations are
elided for brevity.

Lane information is represented as a cost overlay, with low-cost
areas representing the road.When downloaded from themap server,
the map data is initially untrusted and stored in the overlay field
(line 2). Once the map is verified, a copy of it is endorsed and stored
in verifiedOverlay for use by the planner (lines 9–10).

If verification fails, then verifiedOverlay remains null (line 11),
and the planner falls back on a contingency plan (line 22). Other-
wise, when verification succeeds, the planner combines the map’s
cost overlay with the occupancy grid and runs an A* search on the
result (lines 25–26).

The two key security types in this code are OccuGrid{U←}
for Map.overlay, specifying that the overlay is untrusted, and
Plan{T←} for the return value of Planner.plan(), specifying
that the planner’s output is trustworthy. Jif’s type system statically
ensures that the overlay is unable to influence planner output with-
out the endorsement on line 10. The planner and map verifier use a
total of 11 endorsements, summarized in Figure 6.

Location Count What is endorsed
verifyImpl() 2 Number of landmarks, verification result

endorseOverlay() 5 Overlay components: offset, size, resolution,
cell contents, reference to overlay itself

Map constructor 2 Position & size of map
Map deserializer 2 Position & size of map

Figure 6: All endorsements in verifier and planner.

Figure 7: Experimental setup. Orange circles represent navi-
gation waypoints provided in software.

4.7 Attack vector: malicious maps
The architecture is designed to mitigate potential attacks in which
an untrusted hardware or software component is able to influence a
critical driving function of the robot. This can arise when a software
component is Internet-connected, or otherwise vulnerable to injec-
tion of malicious code, and is also connected to a critical driving
software component. We assume that critical software components
cannot be compromised directly, since they are running on a secure
hardware/software stack, but their inputs may be manipulated if
an untrusted source is attacked. In a modern automobile, such an
attack might compromise the infotainment system and thereby gain
access to steering, brake, or throttle controls via the vehicle CAN
network, as was shown in [41].

The map server used in these experiments represents an exter-
nal untrusted component. Future iterations of the prototype can
have untrusted software running on the ZedBoard in tandem with
the planner, to model an untrusted local software component run-
ning on the same processor as safety-critical computations. The
co-location of untrusted and safety-critical software will make
further hardware attacks possible, including timing-channel at-
tacks [21] and other attacks exploiting shared hardware resources
across tasks [24]. Implementing a secure verified processor on the
ZedBoard FPGA can defend against these attacks.

4.8 Environment
Figure 7 shows the scenario we used to test the key features of the
secure architecture. A simple loop lane is surrounded by 8 ArUco tag
landmarks. Four trusted planning waypoints are provided ahead
of time to the control stack, analogous to high-level navigation
waypoints from a satellite navigation system. The waypoints are

Figure 8: Visualization legend.

(a) Nominal map. (b) Malicious map, with a deforma-
tion in the horizontal direction.

Figure 9: Segments from the externally provided map. The
lane as reported by the map is shown in the brown gradient,
and the true lane center is shown in dashed blue.

provided to the planner in sequence so that the robot circles the
loop clockwise. The sensor-only contingency plan, in the case of
map verification failure, is to immediately decelerate the robot to a
stop.

5 EVALUATION
5.1 Effectiveness of input validation
Figure 8 gives a visualization of the map and the robot’s environ-
ment. The center of the actual lane geometry is shown as a dashed
blue line. The robot’s position appears as a red dot, and its current
goal is shown as an orange dot. Green dots represent landmarks
that were previously detected, and landmarks currently visible to
the robot appear in bright cyan. The map server provides lane infor-
mation as a cost overlay, shown in brown, and expected landmark
positions, shown as thin green circles.

Figure 9 shows the nominal (a) and malicious (b) versions of the
map. In the nominal map, the cost overlays and expected landmark
positions correctly describe the true lane geometry and landmarks.

Figure 10: Case 1: The system has verified the map based
on the agreement between the measured and expected land-
mark locations, shown in the upper-left corner of the visu-
alization inlay.

Figure 11: Case 2: A planning failure as a result of the plan-
ner using incorrect map data, in the form of deformed lane
and corresponding landmarks. The planner, operating on
the malicious map, causes the vehicle to leave the lane.

The malicious map is deformed such that the driving loop is nar-
rower than in the nominal case. The landmark locations in the
malicious map are similarly transformed, so that they no longer
match physical landmarks.

We experimentally evaluated the autonomous CPS prototype
for three cases: 1) the map server provides a correct map of lane
geometry and landmarks (Figure 9(a)) and the secure Jif-based
planner is used; 2) themap server provides themaliciousmap shown
in Figure 9(b), while the robot uses an insecure Java version of the
planner; and 3) the map server provides the same malicious map,
and the secure Jif-based planner is used. A software visualization
(Figure 8) presents the measurement and map data used in map
verification and other decision making. Video results of all three
cases are available online [31].

A still image from Case 1 is shown in Figure 10. In this test, the
map was successfully verified, since actual landmark measurements
corresponded to their expected locations on the map. The planner
executed as expected. The robot successfully navigated the loop.

Figure 12: Case 3: A correct planning response resulting
from map verification failure.

In Case 2, the insecure, Java-based planner contains a bug that
causes the map to be always used, even when verification fails.3
Initially, the lane geometry of the deformed map is sufficiently
similar to the true lane geometry, so the robot maintains position
in the lane. However, as the robot rounds the curve at the top of
the map, the landmark measurements begin to diverge from the
expected landmark locations. This causes map verification to fail,
but since the planner does not consider the map trust level, a plan
is generated that follows the map-provided lane geometry. This
causes the vehicle to leave the physical lane, shown in Figure 11.

In Case 3, the secure, Jif-based planner is served the malicious
map. As in Case 2, the landmarks on the deformed map are initially
consistent with sensor observations, so the map is verified and
driving continues nominally. However, when verification fails at
the top of the course, the map is not endorsed for use in the secure
planner. The planner therefore generates a safe and secure, sensor-
only plan, not reliant on map data. This causes the vehicle to slowly
come to a full stopwithout leaving the lane, ensuring a safe stoppage
without relying on corrupt map data.

5.2 Overhead of software-level information
flow control

We evaluated programming overhead by comparing our Jif-based
verifier and planner against the insecure Java version, which was
written in roughly 1,300 lines of code.

The secure version contains 630 lines of Jif code, which roughly
correspond to 537 lines of the Java version, and involve changing (or
adding) 351 lines of code. Of these changed lines, 152 involve adding
security annotations (including 11 endorsements), and 30 lines were
changed to copy the map as it is verified and endorsed. The remain-
ing 169 lines were miscellaneous changes, such as introducing
the security bug, switching to Jif’s data structure libraries (which
track information flows), and refactoring network communication
elsewhere. This overhead seems reasonable, and Figure 5 gives a
representative sample of Jif code: nearly all annotations appear on
class fields and method headers.

3The analogous change to Figure 5 would be to replace map.verifiedOverlay with
map.overlay on line 20, although the Jif compiler would reject this change as being
insecure.

as
t_

as
t

h2
6_

hm

as
t_

h2
6

sj
g_

h2
6

sj
g_

sg
j

m
cf

_a
st

lib
_a

st

m
cf

_m
cf

m
cf

_l
ib

lib
_l

ib

2TCs 4TCs 8TCs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 S
TP

Figure 13: Norm. STP as the number of TCs increases.

The run-time performance of Jif is similar to that of Java. Most
label annotations are erased by the compiler, so do not impose a
run-time overhead. Any security checks that occur at run time are
checks that the programmer is forced to write; omitting themwould
cause the program to be insecure.

Endorsement is the largest source of overhead, since data must
be copied to be endorsed. Although our verifier endorses the copied
map, the overhead is not significant, since endorsement is only done
periodically, when the map changes. Indeed, the robot exhibited no
noticeable performance difference between the two versions of the
planner.

5.3 Overhead of timing-interference protection
The baseline RISC-V Rocket processor uses 34,508 (64.9%) of the
look-up tables (LUTs) on the ZedBoard’s 7z020clg484-1 FPGA. By
comparison, our processor with strong information flow control
uses 40,205 LUTs (75.6%), a LUT utilization overhead of 16.5%. The
baseline processor uses 13 (9%) of the block RAM tiles, whereas the
secure processor utilizes 19.5 (14%). Most of this area overhead is
due to the security tags being stored on-chip.

The baseline and the secure processor both have the same clock
frequency. The main performance overhead of the secure processor
came from a constant-time multiplier that we introduce to remove
timing interference. The average performance overhead for our pro-
cessor prototype was 12.4%. This overhead represents the cost for a
simple embedded processor with conservative protection schemes.

To study the performance overhead of strong timing isolation
for modern multi-core processors, we simulated the multicore pro-
cessor [8] integrated with DRAMSim2 [47], modeling today’s out-
of-order multi-core processor with memory hierarchy parameters
from Intel Xeon E3-1220L and Intel Xeon E7-4820. The performance
is evaluated for multiprogram workloads comprised of SPEC2006
benchmarks, which is the standard benchmark for processor per-
formance. The system throughput (STP) is used as a metric. STP
is the aggregated normalized IPC (instructions per cycle) of each
program relative to the IPC when that program runs by itself.

Figure 13 shows performance of timing compartments (TCs) as
the number of TCs and cores increases from 2 to 8. Overhead is
less than 5% for compute-intensive benchmarks, even with a large
number of TCs. Yet, the overhead of memory-intensive workloads
increases with the number of TCs, because more compartments
share the same amount of fixed memory bandwidth. However, for

secure CPS, two timing compartments should suffice to isolate
safety-critical software. In this case, simulation results suggest that
performance overhead is less than 20% even for memory-intensive
operations.

6 RELATEDWORK
The community has looked at security issues in cyber-physical
systems from many angles. In this work, we tackle the problem by
integrating secure control algorithms, software-level information
flow security, and secure hardware. We summarize related work in
control-algorithm security, software-level formal methods, verified
hardware, as well as full system integration.

6.1 Robotic attack modalities
Several adversarial attack vectors have recently been studied. These
attack vectors can roughly be decomposed into attacks on robotic
control inputs and on robotic sensors. Checkoway et al. [11] per-
form an analysis of attacks against a conventional vehicle. They
categorize the attacks into indirect physical access, and short- and
long-range wireless access. They show that all attack modalities en-
able full control of the vehicle’s CAN bus and all Electronic Control
Units (ECUs). These exploits fall into the category of a control-input
attack (braking, throttle, traction control, etc).

Recent studies have also dealt with attacks on robotic sensors,
such as [32, 40]. These works analyze the effects of compromising
the sensing data used to inform the robot about its position in
the world and the state of its environment, and give a real-world
example of the consequences of such an attack. It is well known that
the state-of-the-art autonomous vehicles rely heavily on detailed
map data [7], and the possibility of map-poisoning attacks has been
identified [41], but to the authors’ knowledge, no prior work has
analyzed a method for adequately addressing these attacks.

Security issues with inter- and intra-vehicle networks has been
addressed with research in the VANET (vehicle ad hoc network)
and MANET (mobile ad hoc network) communities [12, 66]. This
research typically focuses on addressing security before the data
gets to the car via the communication protocols and verification
via many inputs, whereas the proposed work here focuses on a
dedicated data feed for map data, and on-board sensors. We assume
that the communications could be compromised, and thus ask the
question: what can we do to secure the vehicle.

6.2 Security in control algorithms
As part of the DARPA HACMS project, Pajic et al. [40] studied the
theory (and validation) of multiple signals considered here. The
previous verification methods were developed for linear systems
with bounded inputs, showing that guarantees could be made: given
N
2 + 1 trusted inputs, the other untrusted inputs could be detected.
Extensions have focused on time histories of these signals. Ourwork
here focuses on general signals with no assumptions on dynamics
or distributions. Similarly, anomaly node detection has also been
studied in vehicular [55] and wireless[60] ad hoc sensor networks.
Usually a compromised node is discovered by its own statistics [14]
or interaction with other nodes [33]. This has to be checked for
all the nodes in the networks. Our work, on the other hand, uses

information flow theory to propagate the trustworthiness among
sensor inputs, and only needs to check sensors labeled as untrusted.

Sha et al. [49] propose a complementary method that wraps a
complex control algorithm with a simple, secure control algorithm
with only trusted inputs to ensure CPS safety and reliability. Our
work follows this architecture in the sense that a complex map-
based path planner is gated by a simple sensor-only planner in our
system. Rather than rely onmanual code auditing, we use automatic
verification of information flow for security assurance.

6.3 Formal methods for CPS security
We use Jif, a programming language that enforces software-level
information flow security with its type system. Information flow
methods have not been applied much to cyber-physical systems;
however, one related prior effort is by Morris et al. [36], who study
the vulnerability of cyber-physical systems to compromised inputs
from the perspective of quantitative information flow.

Other formal methods have also been adopted to ensure security
in CPS. A heavier-weight approach is to use a proof assistant to
certify functional correctness. For example, control software of a
quadcopter has been verified using the Coq proof assistant [53], en-
suring that it stays away from restricted airspace [45]. ROSCoq [3]
integrates Coq into ROS [46], a popular framework for robot con-
trol. This integration helps software designers to formally verify
ROS implementations and ensure safety. Timing verification of CPS
is also essential to physical security. Ziegenbein and Hamann [68]
verify the timing of safety-critical automotive software by using
SpaceEx [19] to systematically enumerate all timing conditions. For-
mal analysis methods have also been used to verify the timeliness
of real-time control systems [18].

Previous efforts use formal verification tools with a steep learn-
ing curve to certify security properties. By contrast, this work is
the first, to our knowledge, that adopts lightweight, programming
language-based methods to provide security guarantees in CPS.

6.4 Secure HDL and verified processor
Secure HDL has recently been proposed as a way to verify infor-
mation flow security of hardware [28, 29, 67]. Caisson [29] is an
HDL that supports purely static labels in information flow track-
ing. SecVerilog [67] adopts static information flow with mutable,
dependent security labels on top of Verilog to enforce policy and
eliminate timing channels. Sapper [28], instead of static verification,
adds information flow tracking logic into the original hardware.
Multiple verified processors [16, 56] have been constructed using
secure HDL. This work is also inline with this methodology. While
the tool itself is not new, this work represents the first to show that
a secure multi-core processor with no timing interference can be
designed and verified. This work is also the first to evaluate the
performance overhead of such strong timing isolation.

6.5 Secure CPS integration
This work aims to vertically integrate different protection mecha-
nisms to provide security guarantees in CPS. Parallel to our effort,
Veriphy [10] integrates a self-certified toolchain that generates
trusted assembly code from a high-level specification of a control

algorithm in a CPS design. The high-level control algorithm specifi-
cation is also mathematically verified by a logic calculus. However,
this work lacks hardware verification.

As a complementary approach to hardening CPS against attack, a
separate line of work has explored fast recovery from vulnerabilities.
Restart-based security [1, 2, 4] aims to guarantee the security of
CPS by restarting the full system. In the threat model, it is assumed
that it takes non-zero time for an adversary to take control and
cause physical damage. The system can thus nullify attacks by
proactively restarting to remove the adversary before it has any
effect. This is suitable for applications that tolerate availability loss
during restart. Our integration, on the other hand, provides higher
availability because it has no offline period.

7 CONCLUSION AND FUTUREWORK
Our contribution is a novel system architecture for secure au-
tonomous cyber-physical systems, with key components including
verified hardware, language-based information-flow control in soft-
ware, and online algorithms for input verification. This vertical
integration of security offers a desirable method to ensure secure
operation of cyberphysical systems.

A proof-of-concept demonstration was developed using an in-
door mobile robotic testbed performing a lane-following task. Ex-
perimental results show that the map-verification strategy suc-
cessfully prevents adverse vehicle behavior in the event of a ma-
liciously compromised map. By implementing the planning and
verification software in the Jif language, separation is guaranteed
between trusted and untrusted information flows. Additionally, us-
ing Jif guides programmers to consider security when developing
software—during the development of the secure planner, a number
of bugs were discovered where the compiler prevented the use of
unverified, untrusted information.

While this study demonstrates the importance and the promise
of the vertically-integrated protection approach in building secure
CPS, our experiences with the prototype also show limitations of
protecting each layer separately and suggest that there is a po-
tential to further improve the security and the efficiency of the
integrated protection approach through tighter integration across
system layers. For example, the traditional information flow con-
trol techniques in both hardware and software require a system
to make discrete decisions about the security level of information,
such as determining whether input is either trusted or untrusted.
A more continuous notion of trust in information flow control will
allow a system to more accurately reason about the trustworthiness
of inputs. In hardware, today’s mechanisms for strong software
isolation need to remove timing interference among critical soft-
ware modules even when control algorithms can tolerate certain
delays. A tighter integration between control algorithms and hard-
ware isolation has a potential to provide strong security with lower
overhead by selectively removing interference when needed.

Future work will focus on extending the prototype system to
fully integrate all components of the protection architecture includ-
ing custom hardware, develop more tightly-integrated protection
techniques, and to demonstrate protection against more threat vec-
tors. For example, in this study, we evaluated the overhead of secure
hardware using simulations and an RTL prototype. We are in the

process of developing secure processor hardware capable of run-
ning a full operating system. This processor will be integrated into
the prototype robot in order to study the fully integrated system.

ACKNOWLEDGMENTS
This research has been supported by NSF grant 1513797 and NASA
grant NNX16AB09G. Any opinions, findings, conclusions, or rec-
ommendations here are those of the authors and do not necessarily
reflect the views of any funding agencies.

REFERENCES
[1] F. A. T. Abad, R. Mancuso, S. Bak, O. Dantsker, and M. Caccamo. Reset-based

recovery for real-time cyber-physical systemswith temporal safety constraints. In
Emerging Technologies and Factory Automation (ETFA), 2016 IEEE 21st International
Conference on, pages 1–8. IEEE, 2016.

[2] F. Abdi, R. Tabish, M. Rungger, M. Zamani, and M. Caccamo. Application and
system-level software fault tolerance through full system restarts. In Proceedings
of the 8th International Conference on Cyber-Physical Systems, pages 197–206.
ACM, 2017.

[3] A. Anand and R. Knepper. Roscoq: Robots powered by constructive reals. In
International Conference on Interactive Theorem Proving, pages 34–50. Springer,
2015.

[4] M. Arroyo, H. Kobayashi, S. Sethumadhavan, and J. Yang. Fired: Frequent inertial
resets with diversification for emerging commodity cyber-physical systems. arXiv
preprint arXiv:1702.06595, 2017.

[5] K. Asanović, R. Avižienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook,
P. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar, B. Keller, D. Kim, J. Koenig,
Y. Lee, E. Love, M. Maas, A. Magyar, H. Mao, M. Moreto, A. Ou, D. Patterson,
B. Richards, C. Schmidt, S. Twigg, H. Vo, and A. Waterman. The Rocket Chip gen-
erator. Technical Report UCB/EECS-2016-17, University of California Berkeley,
Apr. 2016.

[6] J. Barnes. High Integrity Software: The SPARK Approach to Safety and Security.
Addison Wesley, Apr. 2003. ISBN 0321136160.

[7] B. Berman. Whoever Owns the Maps Owns the Future of Self-Driving Cars, 2016.
[8] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,

D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. The gem5 simulator. SIGARCH Comput. Archit. News,
39(2):1–7, Aug. 2011.

[9] R. Bishop. Intelligent Vehicle Technology and Trends. 2005.
[10] B. Bohrer, Y. K. Tan, S. Mitsch, M. O. Myreen, and A. Platzer. Veriphy: verified

controller executables from verified cyber-physical system models. In Proc. 39th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 617–630. ACM, 2018.

[11] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage,
K. Koscher, A. Czeskis, F. Roesner, T. Kohno, et al. Comprehensive experimental
analyses of automotive attack surfaces. In USENIX Security Symposium. San
Francisco, 2011.

[12] T. W. Chim, S. M. Yiu, L. C. K. Hui, and V. O. Li. Vspn: Vanet-based secure and
privacy-preserving navigation. IEEE Transactions on Computers, 63(2):510–524,
Feb 2014.

[13] R. C. Coulter. Implementation of the pure pursuit path tracking algorithm.
Technical report, Carnegie-Mellon University, 1992.

[14] D.-I. Curiac, O. Banias, F. Dragan, C. Volosencu, and O. Dranga. Malicious node
detection in wireless sensor networks using an autoregression technique. In
Networking and Services, 2007. ICNS. Third International Conference on, pages
83–83. IEEE, 2007.

[15] R. Descartes. Meditations on First Philosophy. 1641.
[16] A. Ferraiuolo, R. Xu, D. Zhang, A. C. Myers, and G. E. Suh. Verification of a

practical hardware security architecture through static information flow analysis.
In Proceedings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems, 2017.

[17] A. Ferraiuolo, Y. Zhao, A. C. Myers, and G. E. Suh. HyperFlow: A processor archi-
tecture for nonmalleable, timing-safe information flow security. In Proceedings of
the 25th ACM Conference on Computer and Communications Security, Oct. 2018.

[18] G. Frehse, A. Hamann, S. Quinton, and M. Woehrle. Formal analysis of timing
effects on closed-loop properties of control software. In Real-Time Systems
Symposium (RTSS), 2014 IEEE, pages 53–62. IEEE, 2014.

[19] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Gi-
rard, T. Dang, and O. Maler. SpaceEx: Scalable verification of hybrid systems. In
International Conference on Computer Aided Verification, pages 379–395. Springer,
2011.

[20] S. Garrido-Jurado, R. M. noz Salinas, F. Madrid-Cuevas, and M. Marín-Jiménez.
Automatic generation and detection of highly reliable fiducial markers under

occlusion. Pattern Recognition, 47(6):2280 – 2292, 2014.
[21] Q. Ge, Y. Yarom, D. Cock, and G. Heiser. A survey of microarchitectural timing at-

tacks and countermeasures on contemporary hardware. Journal of Cryptographic
Engineering, pages 1–27, 2016.

[22] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic de-
termination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[23] M. Hicks, C. Sturton, S. T. King, and J. M. Smith. SPECS: A Lightweight Runtime
Mechanism for Protecting Software from Security-Critical Processor Bugs. In
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2015.

[24] G. Irazoqui, T. Eisenbarth, and B. Sunar. Cross processor cache attacks. In
Proceedings of the 11th ACM on Asia Conference on Computer and Communications
Security, pages 353–364. ACM, 2016.

[25] T. Jeske. Floating car data from smartphones: What Google and Waze know
about you and how hackers can control traffic. In Proc. BlackHat Europe, pages
1–12, 2013.

[26] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal verification of an OS kernel. In Proc. ACM 22nd Symp. on Operating
System Principles (SOSP), pages 207–220, 2009.

[27] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom. Spectre attacks: Exploiting speculative
execution. ArXiv e-prints, Jan. 2018.

[28] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathinam, R. Kastner, T. Sher-
wood, B. Hardekopf, and F. T. Chong. Sapper: A Language for Hardware-level
Security Policy Enforcement. In International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2014.

[29] X. Li, M. Tiwari, J. Oberg, F. T. Chong, T. Sherwood, and B. Hardekopf. Caisson:
A hardware description language for secure information flow. In Proceedings of
the 32nd ACM Conference on Programming Language Design and Implementation,
San Jose, California, USA, June 2011.

[30] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher,
D. Genkin, Y. Yarom, and M. Hamburg. Meltdown. ArXiv e-prints, Jan. 2018.

[31] J. Liu, J. Corbett-Davies, A. Ferraiuolo, M. Campbell, G. E. Suh, and A. C. Myers.
Videos of demo of self-driving robot with map verification. Online, http://hdl.
handle.net/1813/52638, Oct. 2017.

[32] D. Majumdar. Iran Claims Successful Test Flight of Stealth UAV, 2014.
[33] M. Mathews, M. Song, S. Shetty, and R. McKenzie. Detecting compromised

nodes in wireless sensor networks. In Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing, 2007. SNPD 2007. Eighth ACIS
International Conference on, volume 1, pages 273–278. IEEE, 2007.

[34] R. McMillan. Siemens: Stuxnet worm hit industrial systems, 2010.
[35] C. Miller and C. Valasek. Remote exploitation of an unaltered passenger vehicle.

2015.
[36] E. R. Morris, C. G. Murguia, and M. Ochoa. Design-time quantification of in-

tegrity in cyber-physical systems. In ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security (PLAS), pages 63–74, 2017.

[37] T. Moscibroda and O. Mutlu. Memory performance attacks: Denial of memory
service in multi-core systems. In Proceedings of 16th USENIX Security Symposium
on USENIX Security Symposium, 2007.

[38] A. C. Myers. JFlow: Practical mostly-static information flow control. In 26th ACM
Symp. on Principles of Programming Languages (POPL), pages 228–241, Jan. 1999.

[39] OpenCV. www.opencv.org.
[40] M. Pajic, I. Lee, and G. J. Pappas. Attack-resilient state estimation for noisy

dynamical systems. IEEE Transactions on Control of Network Systems, 4(1):82–92,
2017.

[41] J. Petit and S. E. Shladover. Potential cyberattacks on automated vehicles. IEEE
Transactions on Intelligent Transportation Systems, 16(2):546–556, 2015.

[42] J. Petit, B. Stottelar, M. Feiri, and F. Kargi. Remote attacks on automated vehicles
sensors: Experiments on camera and LiDAR. In Black Hat Europe, 2015.

[43] PointGrey. www.ptgrey.com.
[44] S. Poslad. Ubiquitous computing: smart devices, environments and interactions.

John Wiley & Sons, 2011.
[45] D. Ricketts, G. Malecha, and S. Lerner. Modular deductive verification of sampled-

data systems. In Proceedings of the 13th International Conference on Embedded
Software, page 17. ACM, 2016.

[46] Robot Operating System. www.ros.org.
[47] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A cycle accurate memory

system simulator. Computer Architecture Letters, 2011.
[48] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE

Journal on selected areas in communications, 21(1):5–19, 2003.
[49] L. Sha. Using simplicity to control complexity. IEEE Software, 18(4):20–28, 2001.
[50] SICK, Inc. www.sick.com.
[51] J. Singh, T. Pasquier, J. Bacon, H. Ko, and D. Eyers. Twenty security considerations

for cloud-supported Internet of Things. IEEE Internet of Things Journal, 3(3):269–
284, 2016.

[52] S. Skorobogatov and C.Woods. Breakthrough silicon scanning discovers backdoor
in military chip. In Cryptographic Hardware and Embedded Systems Workshop,
September 2012.

[53] The Coq Development Team. The Coq proof assistant, version 8.8.0, Apr. 2018.
[54] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. 2005.
[55] D. Tian, Y. Wang, G. Lu, and G. Yu. A vehicular ad hoc networks intrusion

detection system based on busnet. In Future Computer and Communication
(ICFCC), 2010 2nd International Conference on, volume 1, pages V1–225. IEEE,
2010.

[56] M. Tiwari, J. Oberg, X. Li, J. K. Valamehr, T. Levin, B. Hardekopf, R. Kastner, F. T.
Chong, , and T. Sherwood. Crafting a usable microkernel, processor, and I/O
system with strict and provable information flow security. In ISCA’11, June 2011.

[57] Vicon Motion Systems, Ltd. www.vicon.com.
[58] R. Wojtczuk and J. Rutkowska. Attacking SMM Memory via Intel CPU Cache

Poisoning. invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf, 2009.
[59] R. Wojtczuk and J. Rutkowska. Following the White Rabbit: Software Attacks

Against Intel VT-d Technology. http://theinvisiblethings.blogspot.com/2011/05/
following-white-rabbit-software-attacks.html, 2011.

[60] M. Xie, S. Han, B. Tian, and S. Parvin. Anomaly detection in wireless sensor
networks: A survey. Journal of Network and Computer Applications, 34(4):1302–
1325, 2011.

[61] T. K. Yaakov Bar-Shalom, Xiao-Rong Li. Estimation with Applications to Tracking
and Navigation. Wiley, New York, 1st edition, 2001.

[62] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Secure program partition-
ing. ACM Trans. on Computer Systems, 20(3):283–328, Aug. 2002.

[63] ZedBoard. www.zedboard.org.
[64] K. C. Zeng, Y. Shu, S. Liu, Y. Dou, and Y. Yang. A practical gps location spoof-

ing attack in road navigation scenario. In Proceedings of the 18th International
Workshop on Mobile Computing Systems and Applications, pages 85–90, 2017.

[65] K. Zetter. Headline: Hackers could commandeer new planes through passenger
wi-fi, April 2015.

[66] C. Zhang, R. Lu, X. Lin, P.-H. Ho, and X. Shen. An efficient identity-based batch
verification scheme for vehicular sensor networks. In IEEE INFOCOM 2008 - The
27th Conference on Computer Communications, pages 246–250, April 2008.

[67] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers. A Hardware Design Language
for Timing-Sensitive Information-Flow Security. In International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2015.

[68] D. Ziegenbein and A. Hamann. Timing-aware control software design for auto-
motive systems. In Proceedings of the 52nd Annual Design Automation Conference,
page 56. ACM, 2015.

http://hdl.handle.net/1813/52638
http://hdl.handle.net/1813/52638
invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf
http://theinvisiblethings.blogspot.com/2011/05/following-white-rabbit-software-attacks.html
http://theinvisiblethings.blogspot.com/2011/05/following-white-rabbit-software-attacks.html

	Abstract
	1 Introduction
	2 Threat model
	3 System architecture
	3.1 Sensor verification and safety analysis
	3.2 Software-level information flow control
	3.3 Verified hardware for software isolation

	4 Implementation prototype
	4.1 Prototype system architecture
	4.2 Sensors and platform hardware
	4.3 Map data
	4.4 Path planner
	4.5 Map verifier
	4.6 Information flow control
	4.7 Attack vector: malicious maps
	4.8 Environment

	5 Evaluation
	5.1 Effectiveness of input validation
	5.2 Overhead of software-level information flow control
	5.3 Overhead of timing-interference protection

	6 Related work
	6.1 Robotic attack modalities
	6.2 Security in control algorithms
	6.3 Formal methods for CPS security
	6.4 Secure HDL and verified processor
	6.5 Secure CPS integration

	7 Conclusion and future work
	References

