
P4Testgen: An Extensible Test Oracle For P4

Fabian Ruffy† Jed Liu¶ Prathima Kotikalapudi‡ Vojtěch Havel‡ Rob Sherwood‡

Vlad Dubina∗∗ Volodymyr Peschanenko∗∗ Nate Foster∗‡ Anirudh Sivaraman†

¶Akita Software ⋆Cornell University ‡Intel ∗∗Litsoft †New York University

Abstract
We present P4Testgen, a test oracle for the P416 language
that supports automatic generation of packet tests for any P4-
programmable device. Given a P4 program and sufficient
time, P4Testgen generates tests that cover every reachable
statement in the input program. Each generated test consists
of an input packet, control-plane configuration, and output
packet(s), and can be executed in software or on hardware.

Unlike prior work, P4Testgen is open source and ex-
tensible, making it a general resource for the community.
P4Testgen not only covers the full P416 language specification,
it also supports modeling the semantics of an entire packet-
processing pipeline, including target-specific behaviors—i.e.,
whole-program semantics. Handling aspects of packet pro-
cessing that lie outside of the official specification is critical
for supporting real-world targets (e.g., switches, NICs, end-
host stacks). In addition, P4Testgen uses taint tracking and
concolic execution to model complex externs (e.g., checksums
and hash functions) that have been omitted by other tools, and
ensures the generated tests are correct and deterministic.

We have instantiated P4Testgen to build test oracles for
the V1model, eBPF, and the Tofino (TNA and T2NA) archi-
tectures; each of these extensions only required effort com-
mensurate with the complexity of the target. We validated
the tests generated by P4Testgen by running them across the
entire P4C program test suite as well as the Tofino programs
supplied with Intel’s P4 Studio. In just a few months using
the tool, we discovered and confirmed 25 bugs in the mature,
production toolchains for BMv2 and Tofino, and are conduct-
ing ongoing investigations into further faults uncovered by
P4Testgen.

1 Introduction

We present P4Testgen, a test oracle for the P416 [9] language.
Given a P4 program and sufficient time, P4Testgen automat-
ically generates tests that cover every reachable statement
(or path) in the input program. Each generated test consists

of an input packet, control-plane configuration, and output
packet(s), and can be executed on software or hardware tar-
gets.

P4Testgen generates tests to validate the implementation of
a P4 program. It does not test whether a P4 program is written
correctly (e.g., if it implements a given protocol correctly)
but whether the target and its toolchain (i.e., the compiler [7],
control plane [8, 19], and various API layers [18, 22, 36])
implement the behaviors specified by the program.

Tests generated by P4Testgen can be used in a multitude
of ways (§ 2.2). Chip developers can use generated tests to
validate their target’s associated toolchain; compiler devel-
opers can use the tests for debugging code transformations
and optimizations; and equipment vendors and network own-
ers can use the tests to check that both fixed-function and
programmable targets implement behaviors specified in P4,
including custom and standard protocols.

P4Testgen is an open-source effort, similar to the P4 refer-
ence compiler (P4C) [7] and behavioral model (BMv2) [3].
Because the P416 language allows the structure and capabili-
ties of the target pipeline to be specified as an architecture in
the program, P4Testgen does not bake in assumptions about
the underlying target. This distinguishes P4Testgen from prior
work, which focuses on building tools for specific targets—
e.g., Meissa and p4v for the Tofino switch [29, 48], SwitchV
for legacy fixed-function switches [1], and p4pktgen for
BMv2 [33]. In contrast, the main goal of P4Testgen is to be
extensible to any P4 target. Other projects tackle complemen-
tary goals such as scalability [47, 48] and conformance of P4
programs to external specifications [14, 15, 24, 29, 42, 44, 45].
These techniques can be incorporated into P4Testgen in the
future.

P4Testgen is designed to meet needs of the P4 community.
The set of P4-enabled targets is growing rapidly [3, 10, 11,
21, 34, 35], and each new target requires validation. Unfortu-
nately, current testing tools are not general, which fragments
tool developer effort across the ecosystem and makes build-
ing new P4 targets needlessly hard. Developing validation
tools requires having expertise in formal methods as well

1

ar
X

iv
:2

21
1.

15
30

0v
1

 [
cs

.N
I]

 2
8

N
ov

 2
02

2

as a detailed understanding of the P4 language and the spe-
cific behaviors and quirks of the underlying target. Finding
developers that are able to satisfy this trifecta is costly and
difficult. The consequence is that many targets do not come
with adequate test tooling, which creates friction for adoption
of P4 targets.

Our position is that this fragmentation is undesirable and
entirely avoidable. While there may be use-cases that war-
rant the development of specialized tooling, the common
case—i.e., the generation of input–output pairs for a given
P4 program—can be derived from the semantics of the P4
language, in a manner that is largely decoupled from the tar-
get. Developing a common platform for validation tools has
several benefits. First, common software infrastructure (lexer,
parser, type checker, etc.) and an interpreter that realizes the
P4 semantics can be implemented just once and shared across
many tools. Second, since it is open-source, better testing
or verification techniques (e.g., for path selection or cover-
age) can be contributed to P4Testgen and benefit the whole
community.

To provide a common tool platform, P4Testgen decom-
poses the whole-program semantics of a P4 program into
(i) the core P4 language semantics mandated by the P4 lan-
guage specification, and (ii) the target-specific interpretation
of the P4 program. Concretely, a P4 program consists of
multiple P4 programmable blocks (whose semantics are pro-
vided by the core language semantics) separated by interstitial
target-specific elements (whose semantics are provided by
target-specific extensions). Whole-program semantics are the
main reason why P4Testgen can generate tests for a variety
of P4 targets without sacrificing generality and accuracy.

P4Testgen’s key technical contribution is developing whole-
program semantics and addressing the following challenges:

1. Pipeline templates: Most targets perform additional
processing that is not described by the P4 program itself.
We use pipeline templates to succinctly describe target-
specific differences in the pipeline-processing behavior.

2. Target extensions and packet sizing: Some targets do
not implement the P416 specification to the letter and
diverge from the default semantics of some language
constructs. P4Testgen supports target-specific extensions
to override default P4 behavior, including an intricate
model of packet-sizing, which allows targets to flexibly
change the size of packets during processing.

3. Taint analysis: Some targets exhibit non-deterministic
behavior, making it hard to predict output packets. We
use taint analysis to track the determined bits in P4
programs to ensure that generated tests are deterministic.

4. Concolic execution: Some targets have features that are
too complex to be expressed in first-order logic. We use
concolic execution [25, 41] to model these features.

To validate our design for P4Testgen, we have built exten-
sions for four different targets: the v1model [16] architecture
of BMv2, the ebpf_model [20] for the Linux kernel, tna ar-

chitecture for the Tofino 1 chip [10] and the t2na architecture
for the Tofino 2 chip [10]. All four extensions implement
their own target semantics and P4 code interpretation without
requiring modification to the core parts of P4Testgen. We
have tested the correctness of the P4Testgen oracle by gener-
ating input–output tests for the example P4 programs of the
v1model and tna/t2na architectures. Executing the gener-
ated tests on the appropriate target toolchains, we have found
16 bugs in the toolchain of the Tofino compiler and 9 in the
toolchain of BMv2. P4Testgen is available on GitHub under
an Apache2 License at https://github.com/p4lang/p4c/
tree/main/backends/p4tools/modules/testgen.

2 Motivation

P4 offers extraordinary flexibility for specifying data plane
behavior, but the toolchains and targets used to implement
P4 programs require extensive testing. With a P4-based sys-
tem, the number of components that the network owner must
administer is much larger than with traditional protocols and
fixed-function devices, and functionality also evolves at soft-
ware timescales. So as the P4 ecosystem matures, increased
focus is being placed on tools for validating P4 implementa-
tions [1, 5, 13, 28, 33, 39, 47, 48].

2.1 Why Automate Test-Case Generation?
A simple approach to validating P4 programs is to write input–
output tests for specific features by hand. Each test comprises
an input packet and control-plane configuration required to
exercise the feature, and the expected output packet. The
input packet is fed into a preconfigured target and the output
is recorded. If the actual and expected outputs match, then the
test passes and the target is deemed to implement the feature.

While this methodology is straightforward, it has two prac-
tical difficulties. First, the return on investment for writing
tests is unclear. As a form of black-box testing, it can be hard
to determine whether the test suite fully exercises the features
being validated. Second, writing input–output tests is tedious.
Even with high-level test frameworks [2, 6], developers still
often write long, detailed binary sequences to specify input
and output packets as well as device configurations.

In practice, many network programmers do not write many
tests (e.g., only around 300 tests are distributed with the
Tofino SDE). Instead, they fall back to techniques like fuzz
testing with arbitrary inputs [4, 32]—an approach that is cer-
tainly useful, but does not provide a precise notion of cover-
age. The move to programmable devices only exacerbates the
problems associated with validation as the set of features is
not fixed in advance and can instead evolve over time.

At the same time, the move from fixed-function to pro-
grammable devices also presents an opportunity. With pro-
grammable devices, device functionality is precisely specified
as a program in a domain-specific language (DSL) such as

2

https://github.com/p4lang/p4c/tree/main/backends/p4tools/modules/testgen
https://github.com/p4lang/p4c/tree/main/backends/p4tools/modules/testgen

P4 [9], which itself has clear semantics. Thus, we can draw
from software engineering and testing research, to develop
automated tools for testing network devices.

2.2 Who Can Use P4Testgen?
With a growing P4 ecosystem, a general-purpose test oracle
like P4Testgen can serve many different kinds of users.

Network operators need assurance that their programmable
devices and associated toolchains work as intended. With
P4Testgen, they can automatically generate a unique set of
tests for each version of their deployed programs.

Compiler developers need assurance that code transforma-
tions and optimizations are correct. With P4Testgen, they can
automatically generate tests that exercise specific optimiza-
tions. If a generated test passes when the optimizations are
disabled but fails when they are enabled, there is a bug in the
compiler. We have used P4Testgen to uncover a variety of
compiler bugs in P4 compiler back ends (§ 7).

Equipment vendors need assurance that their target adheres
to published standards. Chip manufacturers can instantiate
P4Testgen for their chip and associated toolchain, and gen-
erate tests to check that representative P4 programs are im-
plemented correctly. Other OEMs and ODMs can ensure that
their products correctly implement standard protocols as well
as custom P4 programs, according to customer requirements.

Users of legacy toolchains are sometimes reluctant to up-
grade due to concerns about bugs—new versions of a
toolchain can break workarounds to known issues. With
P4Testgen, these users can generate tests to increase the confi-
dence because P4Testgen is not tied to any particular version
of the toolchain. When they are ready to upgrade, they can
execute tests generated by P4Testgen to ensure their P4 pro-
grams behave as intended.

Users of fixed-function devices can use P4 to model the func-
tionality of their equipment [1]. P4Testgen can derive appro-
priate validation tests from the P4 model without the overhead
of differential testing and can also provide coverage guaran-
tees.

2.3 What Are the Concrete Challenges?

(1) P4 does not specify the behavior of the full pipeline.
A P4 program only specifies the behavior of certain pro-
grammable blocks. It does not specify the execution order
of those blocks, or how the output of one block feeds into
the input of the next. For instance, Tofino’s tna and t2na ar-
chitectures contain independent ingress and egress pipelines,
with a traffic manager between them. The traffic manager
can forward, drop, multicast, clone, or recirculate packets,
depending on their size, content, and associated metadata.
None of these behaviors are captured in the P4 program itself.

(2) Many programs behave differently on different targets.
The P4 specification delegates numerous decisions to targets
and many targets deviate from the specification. For instance,
match-action table execution can be customized using target-
specific properties. Annotations can influence the semantics
of headers and other language constructs. As another example,
the P4 specification states that if extracting a header fails
because the packet is too short, the parser should transition to
the reject state and signal an error. However, the way this
error is handled is left up to the target: some drop the packet,
others consider the header uninitialized, while others silently
add padding to initialize the header. App. A.1 contains a
(non-exhaustive) list of such target-specific behaviors.

(3) P4 programs can be non-deterministic or even random.
Not all parts of a P4 program are well-specified. For in-

stance, reading from an uninitialized variable returns an un-
defined value. P4 programs may also invoke arbitrary extern
functions, such as pseudo-random number generators, which
produce unpredictable output. To ensure that generated tests
are deterministic, P4Testgen needs facilities to track program
segments that may cause unpredictable output. These outputs
can then be mitigated by providing hints to P4Testgen’s oracle
or test back end to appropriately address flaky output bits.

(4) P4 programs rely on computations that can not be easily
encoded into first-order logic. Like many other automated
verification tools, P4Testgen relies on a first-order theorem
prover (i.e., SAT/SMT solver) under the hood. However, not
all data plane computations can easily be encoded into first-
order logic—e.g., checksums and other hash functions, or pro-
grams that modify the size of the packet using dynamic values.
Consider a program that invokes the advance function, which
increments the parser cursor, on a previously-parsed value.
Modeling this behavior precisely either requires bit vectors
of symbolic width, which is not well-supported in solvers, or
branching on every value, which is impractical.

2.4 What Are P4Testgen’s Coverage Goals?

Existing tools such as Meissa [48] and FP4 [47] purport to pro-
vide full coverage, but their guarantees are subject to some im-
portant qualifications. Meissa tracks program coverage only
for the limited set of paths that satisfy programmer-specified
preconditions (written in the LPI specification language [45]).
It also assumes that tables are pre-populated, which substan-
tially reduces the set of feasible paths. Similarly, FP4 only
tracks coverage of the table actions executed in the program.
In general, ensuring full path coverage is a challenge due
to the “branchy” nature of real-world P4 programs, which
causes path explosion. For P4Testgen, we focus on statement
coverage as our main metric. Our goal is for P4Testgen’s
test case generation to scale in proportion to the size of the
program, and to ensure a good distribution of tests across
statements.

3

1 parser Parser(...) {
2 pkt.extract(hdr.eth);
3 transition accept;
4 }
5 control Ingress(...) {
6 action set_out(bit <9> port) {
7 meta.output_port = port;
8 }
9 table forward_table {
10 key = { h.eth.type: exact; @name("type")

}
11 actions = { noop; // Default action.
12 set_out; }
13 }
14 h.eth.type = 0xBEEF;
15 forward_table.apply();
16 }

(a) P4 program that forwards using the source MAC.

1 parser Parser(...) {
2 pkt.extract(hdr.eth);
3 transition accept;
4 }
5 control Verify(...) {
6 meta.checksum_err = verify_checksum(
7 hdr.eth.isValid (),
8 {hdr.eth.dst , hdr.eth.src},
9 hdr.eth.type);
10 }
11 control Ingress(...) {
12 if (meta.checksum_err == 1) {
13 mark_to_drop (); // Drop packet.
14 }
15 }

(b) P4 program that validates the Ethernet checksum.

1 Input Packet |Output packet | Table configuration
2 Size In eth.dst eth.src eth.type |Size Out eth.dst eth.src eth.type |
3 --- Example 1 | |
4 112 0 000000000000 000000000000 0000 |112 0 000000000000 000000000000 BEEF | N/A
5 112 0 000000000000 000000000000 0000 |112 2 000000000000 000000000000 BEEF | match(type=0xBEEF),action(set_out(2))
6 112 0 000000000000 000000000000 0000 |112 0 000000000000 000000000000 BEEF | match(type=0xBEEF),action(noop())
7 96 0 000000000000 000000000000 |96 0 000000000000 000000000000 | N/A
8 --- Example 2 | |
9 96 0 BADC0FFEE0DD F00DDEADBEEF |96 0 BADC0FFEE0DD F00DDEADBEEF | N/A
10 112 0 BADC0FFEE0DD F00DDEADBEEF 7072 |112 0 BADC0FFEE0DD F00DDEADBEEF 7072 | N/A
11 112 0 BADC0FFEE0DD F00DDEADBEEF FFFF |x x | N/A

(c) P4Testgen tests for program 1a and 1b. “In” and “out” denote the in- and output port. “Size” is the bit-width of the packet.

Figure 1: P4Testgen test case generation examples.

3 P4Testgen in Action

Consider two P4 programs written for a simple BMv2-like
target with a single parser and control block in Fig. 1.

Example 1. In the first program (Fig. 1a), Ethernet packets
are forwarded based on a table that matches on the EtherType.
P4Testgen generates four distinct tests for this program (lines
4–7 in Fig. 1c). In the first, the Ethernet packet is valid but
there are no table entries. Since the default action is noop,
the output port of the packet does not change. In the sec-
ond, the configuration has a table entry that executes set_out
whenever h.eth.type matches a given value. P4Testgen gen-
erates the corresponding table entry using symbolic execution.
Since the program previously set h.eth.type to 0xBEEF the
match entry is 0xBEEF and the output port is chosen at ran-
dom. In the third, the test is similar, except that P4Testgen
chooses the second valid action, noop, which does not alter
the output port. In the fourth, the P4Testgen makes use of its
packet sizing (§ 5.2.1) implementation to generate a packet
that is too short and fails the extract call. Hence, the target
stops parsing and continues to the control, which matches
forward_table on an uninitialized key. Using taint tracking,
(§ 5.3) P4Testgen identifies that it can not generate a table
entry that is guaranteed to match. So it executes the default
action rather than inserting an entry, which would lead to a
flaky test.

Example 2. The second program (Fig. 1b) parses an Ethernet
header. If it is valid, the program then checks whether the com-
puted checksum (i.e., on hdr.eth.dst and hdr.eth.src)
corresponds to EtherType in the packet (hdr.eth.type).1

If not, meta.checksum_err is set to true and the packet is
dropped. P4Testgen generates three distinct tests for this
program (lines 9–11 in Fig. 1c). In the first, the input
packet is too short and the Ethernet header is invalid. Hence,
verify_checksum is not executed and the error is not set, and
the packet is forwarded. In the second, P4Testgen generates
a packet with a valid Ethernet header and verify_checksum
computes a checksum using the values hdr.eth.dst and
hdr.eth.src. Here, P4Testgen uses concolic execution
(§ 5.4) to model the checksum computation and assigns
hdr.eth.type to the resulting value. Hence, the Ethernet
checksum of the packet is correct, and the packet is forwarded.
For the final test, P4Testgen generates a test input where
hdr.eth.type does not match with the computed checksum.
Here, verify_checksum signals an error, which causes the
target to drop the packet in the ingress.

Summary. To the best of our knowledge, neither of these
examples would be handled correctly by existing validation
frameworks [29, 33, 44, 48], due to the presence of packets
with non-standard sizes and complex externs. Nevertheless,

1We note that this is a custom, non-standard use of the EtherType header.

4

P4

program

SMT solver (Z3)

test3
test2

test1

test3
test2

test1

Emitted test

cases

(2) P4Testgen oracle

P4 semantics

Target semantics

(v1model, tna, ebpf,...)

(2) P4Testgen oracle

P4 semantics

Target semantics

(v1model, tna, ebpf,...)

(1) P4Testgen front end

Target program optimizations

(v1model, tna, ebpf,...)

(1) P4Testgen front end

Target program optimizations

(v1model, tna, ebpf,...)

(3) Abstract test generator

Target test generators

(STF, PTF, Protobuf,...)

(3) Abstract test generator

Target test generators

(STF, PTF, Protobuf,...)

Figure 2: P4Testgen workflow. Numbers are referenced in
§ 4.

the behaviors exhibited by these tests are possible on the
underlying targets, so testing them is important.

4 P4Testgen Overview

P4Testgen generates tests using symbolic execution. It selects
a path in the program, encodes the associated path constraint
as a first-order formula, and then solves the constraint using
an SMT solver. If it finds a solution to the constraint, then
it emits a test comprising an input packet, output packet(s),
and any control-plane configuration required to execute the
path. If it finds no solution, then the path is infeasible. Along
with generated tests, P4Testgen records detailed statement
coverage information for the P4 program, using heuristics to
try to maximize coverage with the fewest number of paths.

Test generation. Fig. 2 shows P4Testgen’s three-phase work-
flow:

1. Translate the input program and target into a symboli-
cally executable representation. P4Testgen takes as input a
P4 program, the identifier of the target, and the desired test
framework. It parses the P4 program and converts it into the
P4C intermediate representation (IR) language. P4Testgen
then applies a series of compiler optimizations to transform
the P4 IR into a simplified form that streamlines symbolic
execution. For instance, P4Testgen unrolls parser loops up
to a bound and replaces run-time indices for header stacks
with conditionals and constant indices. We assume these opti-
mizations are free of bugs that lead to semantically incorrect
output; tools like Gauntlet [39] or Petr4 [13] can be used to
verify this assumption.

2. Generate the test case specification. After the input has
been parsed and transformed, P4Testgen symbolically exe-
cutes the program by stepping through the individual nodes
(parser states, tables, statements). By default, P4Testgen
provides a reference implementation for each P4 construct,
but each step can be customized to reflect target-specific se-

ArchitectureSpec("V1Switch", {
// parser Parser<H, M>(packet_in b,
// out H parsedHdr,
// inout M meta,
// inout standard_metadata_t sm);
{"Parser", {none, "*hdr", "*meta", "*sm"}},
// control VerifyChecksum<H, M>(inout H hdr,
// inout M meta);
{"VerifyChecksum", {"*hdr", "*meta"}},
// control Ingress<H, M>(inout H hdr,
// inout M meta,
// inout standard_metadata_t sm);
{"Ingress", {"*hdr", "*meta", "*sm"}},
// control Egress<H, M>(inout H hdr,
// inout M meta,
// inout standard_metadata_t sm);
{"Egress", {"*hdr", "*meta", "*sm"}},
// control ComputeChecksum<H, M>(inout H hdr,
// inout M meta);
{"ComputeChecksum", {"*hdr", "*meta"}},
// control Deparser<H>(packet_out b, in H hdr);
{"Deparser", {none, "*hdr"}}});

Figure 3: The pipeline state for the v1model architecture.
Comments describe the associated P4 block. The word none
indicates parameters irrelevant to the state.

mantics by overriding methods in the symbolic executor’s
visitor. Targets must also define how individual P4 blocks are
chained together (i.e., the order in which a packet traverses
the P4 blocks), what kind of parsable data can be appended
or prepended to packets (e.g., frame check sequences), and
how target system data (also known as intrinsic metadata) is
initialized.

3. Emitting the test case. Once P4Testgen has executed a path,
it emits an abstract test specification, which describes the ex-
pected system state (e.g., registers and counters) and output
packet(s) for the given packet input and control-plane con-
figuration. Different frameworks can concretize this abstract
test specification for execution (e.g., STF [6] or PTF [2]).

5 Whole-Program Semantics

P4 symbolic execution (§ 4) requires a semantic represen-
tation of the entire program. Whole-program semantics is
P4Testgen’s solution to this problem and addresses § 2.3’s
challenges. It uses 4 techniques: pipeline templates, target
extensions and packet sizing, taint analysis, and concolic exe-
cution.

5.1 The Pipeline Template
The P4 language does not provide any information about the
behavior of the target architecture (e.g., the order of execution
of P4 programmable blocks) (Challenge 1). Hence, P4Testgen
must provide a mechanism to describe the target-specific data
and control flow. In P4Testgen, each target extension must
define a pipeline template. A pipeline template has two com-
ponents: its state and its control flow. The pipeline state maps
variables in the P4 program to per-packet data maintained

5

1 control Ingress(...) {
2 if (hdr.ip.ttl == 0) {
3 m.drop_ctl = 1; // Drop packet
4 }
5 if (hdr.ip.ttl == 1) {
6 resubmit.emit(m); // Resubmit packet
7 }
8 }
9 Pipeline(I_Parser (), Ingress (), I_Deparser (),

E_Parser (), Egress (), E_Deparser ()) pipe;

Figure 4: P4 program snippet that sets metadata state.

by the target—e.g., which parameters of a parser correspond
to the metadata on the target. The pipeline control flow de-
scribes how this per-packet data is manipulated throughout the
program and how it influences the execution of the program.

5.1.1 Pipeline State

Pipeline state describes the per-packet data that is transferred
between P4-programmable blocks. Fig. 3 shows the pipeline
state description for the v1model in a simple C++ DSL. The
objects listed in the data structure are mapped onto the pro-
grammable blocks in the top-level declaration of a P4 program.
The declaration order of these objects determines the order
in which the blocks are executed by default, but this can be
overridden by the pipeline control flow based on a packet’s
per-packet data values. Arguments with the same name are
threaded through the control blocks in execution order. For
example, the *hdr parameter in the parser is first reset, as it
is used in an out position. After executing the parser, it is
copied into the checksum unit, then to the ingress control, etc.

5.1.2 Pipeline Control Flow

Modelling the pipeline control flow. P4Testgen allows ex-
tension developers to provide code to models arbitrary inter-
pretation of the pipeline state. Figs. 4-5 shows an example
of a P4 program snippet being interpreted in the context of
P4Testgen’s pipeline control flow. The target is a fictitious
target with an implicit traffic manager between ingress and
egress pipelines. The green dashed segments in the figure are
target-defined and interpret the variables set in the Ingress
control. If m.drop_ctl is set, the packet will be dropped by
the traffic manager, skipping execution of the entire egress. If
the resubmit.emit() is called, m.recirculate will implic-
itly be set, causing P4Testgen to reset all metadata and reroute
the execution back to the ingress parser. We have modeled
this control flow for targets such as v1model, tna, and t2na;
ebpf_model does not support recirculation.

Continuations. To model how per-packet-data (e.g., headers,
metadata) flows between (and is transformed by) the pro-
grammable blocks of a target, P4Testgen uses continuations,
which are a general way to represent control flow in a pro-

Traffic manager

m.drop?m.recirculate?

Traffic manager

m.drop?m.recirculate?

attach_

metadata()
Parser Control DeparserParser Control Deparser

Ingress pipe

Parser Control Deparser

Ingress pipe

Parser Control DeparserParser Control Deparser

Egress pipe

Parser Control Deparser

Egress pipe

Emit

Drop

 

Figure 5: Target control flow as modeled by P4Testgen.
Green, dashed segments are target-defined. 7 denotes false.

gram [37]. An advantage of using continuations is that they
can represent arbitrary control flow, including recirculation,
in a simple way. In particular, a continuation can expand,
shorten, or alter the subsequent execution stack. In P4, they
model the traversal of a packet through an arbitrary series
of pipelines. Another benefit of continuations is to preserve
execution contexts across paths in the program. Preserving
contexts enables trying different heuristics for path explo-
ration, which optimize for different goals.

5.2 Accommodating Target-Specific Behavior

Since some targets diverge in their interpretation of core P4
language constructs, P4Testgen is structured such that every
continuation function can be overridden by target extensions.
For example, the v1model P4Testgen extension overrides
the canonical P4Testgen table continuation to implement its
own annotation semantics (e.g., the “priority” annotation,
which reorders the execution of constant table entries based
on the value of the annotation). Targets may also reinter-
pret the core P4 packet parsing functions (extract, advance,
lookahead).

5.2.1 P4Testgen’s Approach to Packet-Sizing

To address the variety of interpretations of parsing functions
and the traffic manager (Challenge 2) we have also developed
a custom model for packets that supports dynamic packet
resizing. This turns out to be non-trivial due to the need to
encode our model as a first-order logic formula for input to an
SMT solver. Recall that P4 externs such as extract can throw
exceptions when the packet is too short or malformed. While
these events are currently sparsely tested when developing a
new P4 target and toolchain, P4Testgen generates tests that
trigger such exceptions. Particularly on hardware targets,
short packets may not be parsed as expected.

P4Testgen makes the packet size a symbolic variable in the
path constraint. However, making the packet size part of the

6

1 parser IngressParser(...)
2 pkt.extract(ingress_meta);
3 pkt.extract(hdr.eth);
4 pkt.extract(hdr.ipv4);
5 control IngressDeparser(...)
6 pkt.emit(hdr.eth);
7 pkt.emit(hdr.ipv4);
8 parser EgressParser(...)
9 pkt.extract(egress_meta);
10 pkt.extract(hdr.eth);
11 control EgressDeparser(...)
12 pkt.emit(hdr.eth);

(a) Extern sequence manipulating Ethernet and IPv4 headers.

extract(hdr.eth)

extract(ingress_meta)

prepend(ingress_meta)

emit(hdr.eth)

extract(hdr.eth)

extract(egress_meta)

prepend(egress_meta)

emit(hdr.eth)

Required

input

packet

Live

packet

Emit

buffer

prepend_emit_buffer

extract(hdr.ip)

emit(hdr.ip)

prepend_emit_buffer

Egress

Pipe

Ingress

Pipe

e
th

e
th

e
th

e
th

e
th

e
th

e
th

e
th

ip
ip

ip
ip

ip
ip

ip

e
th

e
th

ip
ip

Operations

Final test

input packet

Final test

output packet

e
th

'
m

e
ta

'
e
th

'
ip

'

ip
'

e
th

'
ip

'

ip
'

e
th

''

ip
'

m
e
ta

ip
'

Legend

Target-defined operation
P4-defined operation

Steps through

pipe

e
th

'
e
th

'

ip
'

e
th

''

(b) Change in the packet sizing variables as P4Testgen steps through
the program. Each block corresponds to a P4 header.

Figure 6: Depiction of packet sizing for a Tofino program.

path constraints of P4Testgen is not straightforward. First,
as the packet size variable is symbolic, the required packet
size to traverse a particular path is only known after the SMT
solver is invoked. Second, externs in P4 manipulate the size
of the packets (e.g., extract calls shorten while emit calls
lengthen the packet), which requires careful bookkeeping.
Third, various targets both react to specific packet sizes (e.g.,
BMv2 produces garbage values for 0-length packets [38],
whereas Tofino drops packets smaller than 64 bytes). Fourth,
some targets add and remove content from the packet (e.g.,
Tofino adds internal metadata to the packet). Any packet-
sizing mechanism needs to handle these challenges, while
remaining target independent.

Solution to packet sizing. Our approach to model packet sizes

is based on a custom model for parsers. For each program
path, we calculate the minimum header size required to suc-
cessfully exercise the path without triggering an error in the
parser. Our packet-sizing model can be defined in terms of
three variables: the required input packet (I), the live packet
(L), and the emit buffer (E). The input packet I represents the
minimum header size required to traverse a particular program
path. It also denotes the length of the final input packet in the
generated test. The live packet L represents the current packet
header that can be manipulated by the P4 program. L also
corresponds to the length of the expected packet output in the
test. The emit buffer E accumulates the headers generated by
calls to emit, preserving their order.

Fig. 6 demonstrates how the variables are built while
traversing an example pipeline. Initially, all variables are
zero-width bit vectors. Targets can add and remove content
from the variables by concatenating or slicing the variable bit
vectors. For example, targets may prepend parseable metadata
to the input packet. In P4Testgen, this metadata will be added
to L. While traversing the program, content is sliced from the
live packet by extern calls in the P4 program. If L is empty
(meaning we have run out of packet content), P4Testgen allo-
cates a new packet variable and appends it to I. This implicitly
records a requirement that a larger packet is needed to pass a
particular parser extern call.

In various P4 targets, headers have to be explicitly emitted
in the deparser stage using an emit. With every successful
emit call, P4Testgen adds the header to E. Once the P4 pro-
gram traverses a trigger point (usually after exiting a deparser),
P4Testgen prepends E to L.

This design becomes important in multi-parser, multi-pipe
targets, such as Tofino. Each Tofino pipeline has two parsers:
ingress and egress. The egress parser receives the packet (L)
after the ingress and traffic manager. If the egress parser runs
out of content in L, P4Testgen will again need to append sym-
bolic content to I, increasing the size of the minimum required
input packet to successfully traverse the egress parser.

5.3 Controlling Unpredictable Behavior

To avoid unpredictable behavior in the P4 program (Challenge
3), we use taint analysis [40]. Taint is defined as bits which
can either be 0 or 1 during program execution. Taint analysis
defines how this nondeterminism propagates between sources
that produce taint and sinks that consume this taint. In our
case, we track how taint propagates when P4Testgen steps
through the P4 program. For example, a declaration of a
variable that is not initialized will be designated as a source
of taint, and any operation that references a tainted variable is
in turn tainted.

We use taint to guide several choices in P4Testgen. For
example, if the output port is tainted in the test-generation
phase, P4Testgen cannot predict its value and therefore drops

7

the test.2 On the other hand, when the output packet contains
taint, we know that certain bits are unreliable. We can make
use of test-framework-specific facilities (e.g., “don’t care”
masks) to ignore tainted output bits in the generated test.

Mitigating taint spread. A common problem with taint anal-
ysis is taint spread, the proliferation of taint throughout
the entire program, quickly tainting all operations. Taint
spread makes test case generation almost useless, as the gen-
erated tests will come with many “don’t care” wild cards.
To mitigate taint spread we make use of a few heuristics.
(1) We apply optimizations to eliminate any unnecessary
tainting (for example, multiplying a tainted value with 0 re-
sults in 0). (2) We exercise freedom in the P4 specification
to avoid taint. For example, when a ternary table key is
tainted, we can insert a wildcard entry that always matches
and remove the non-determinism from the match. (3) We
exploit target-specific determinism. For example, Tofino has
an auto_init_metadata annotation that initializes all tar-
get metadata with 0. Applying these heuristics significantly
reduces the amount of taint spread in the program.

Rapid extern prototyping. A positive outcome of using taint
is the ability to quickly prototype target externs. In gen-
eral, implementing a new extern is complex. However, a
developer instantiating P4Testgen for a given target can use
taint variables to quickly prototype parts that may need time-
intensive development but are less critical for test-case gen-
eration. We used this approach to generate initial stubs for
many externs (e.g., checksums, meters) before implementing
them precisely.

5.4 Supporting Complex Functions
To handle complex functions that cannot be easily encoded
into first-order logic (Challenge 4), P4Testgen uses concolic
execution [25, 41]. Concolic execution is an advanced tech-
nique that combines symbolic and concrete execution. At a
high level, concolic execution leaves difficult-to-model func-
tions initially unconstrained, and adds constraints later using
a concrete implementation of the function.

The verify_checksum function described in § 3 is an ex-
ample where concolic execution is necessary. The checksum
computation is too complex to be expressed in first-order logic.
Instead, we model the return value of the extern function as an
uninterpreted function dependent on the input arguments of
the extern. This uninterpreted function is propagated through-
out the program as a placeholder variable while P4Testgen
continues executing. If this function becomes part of a path
constraint, the SMT solver is free to fill it in with any function
that satisfies the rest of the path constraint.

Once we have generated a full path, we need to assign
a concrete value to the result of the uninterpreted function.

2No available test framework is able to check whether the output port is
one of many possible values. Addressing this is future work.

100%
69%

60%
55%

Symbex Z3 Test Generation Other

Figure 7: Average CPU time spent in P4Testgen.

First, we invoke the SMT solver to provide us with concrete
values to the input arguments of the uninterpreted function
that satisfy the path constraints we have collected on the rest
of the path. Second, we use these input arguments as inputs
to the actual extern implementation (e.g., the hash function
executed by the target). Third, we add equations to the path
constraints that bind all the values we have calculated to the
appropriate input arguments and output of the function. We
then invoke the solver a second time to assess whether the
result computed by the concrete function satisfies all of the
other constraints in the path. If so, we are done and can
generate a test with all the values we calculated.

Handling unsatisfiable concolic assignments. In some cases,
the newly generated constraints cannot be satisfied using the
inputs chosen by the SMT solver. In practice, retrying by
generating new inputs may not lead to a satisfiable outcome.
Before discarding this path entirely, we try to apply domain-
specific optimizations to produce better constraints for the
concolic calculation. For example, the verify_checksum
function (see also §3) tries to match the computed check-
sum of input data with an input reference value. If the com-
puted checksum does not match with the reference value,
verify_checksum reports a checksum mismatch. Instead of
retrying to find a potential match, we add a new path that
forces the reference value to be equal to the computed check-
sum. This path is satisfiable if the reference value is derived
from symbolic inputs, which is often the case. Note that in
situations where the reference value is a constant, we are
unable to apply this optimization.

6 Implementation

P4Testgen is written as an extension to P4C in about 20k lines
of C++ code. For every program path, P4Testgen maintains an
independent execution state object that tracks the state of this
particular path. This includes the symbolic environment and
variable values, collected path constraints, execution traces,
test properties, and target state necessary to traverse that path.
To compute path constraints, P4Testgen uses Z3 [12] con-
figured with incremental solving as its SMT solver. Z3 has
not been a performance bottleneck. Fig. 7 shows P4Testgen’s
CPU time distribution for generating 10000 tests for the larger
programs listed in Tbl. 4a. Solving path constraints in Z3
accounts for less than 10% of the overall CPU time spent.

Path traversal. By default, P4Testgen uses depth-first search

8

Architecture Target Test back end

v1model BMv2 STF, PTF, Protobuf
tna Tofino 1 Internal, PTF
t2na Tofino 2 Internal, PTF
ebpf_model Linux Kernel STF

Table 1: P4Testgen extensions.

(DFS) to explore paths. It does not prioritize any path and it
explores all valid paths to exhaustion. To reduce the number
of paths, P4Testgen prunes unsatisfiable paths and exploits
fixed, target-specific preconditions, which restrict the avail-
able initial packets. Such target-specific preconditions include
a minimum packet size or initializing metadata to zero.

Interacting with the control plane. P4Testgen uses the con-
trol plane to trigger some paths in a P4 program (e.g., paths
dependent on parser value sets [9, §12.11], tables, or register
values). Since P4Testgen does not perform load or timing
tests, the interaction with the control plane is straightfor-
ward. For each path that requires control-plane configuration,
P4Testgen creates an abstract test object, which becomes part
of the final test case specification. For tables, P4Testgen
creates a single control-plane entry for each table of the P4
program to trigger a single match-action pair. If the test frame-
work provides an API, P4Testgen can also initialize externs
such as registers, meters, counters with the appropriate value
and validate their state after test execution. In general, the
richer the API of the test framework, the more P4Testgen
can exercise the control plane of the target—e.g., STF has
significantly fewer configuration options than PTF. Among
others, BMv2 STF does not yet support adding range entries
to tables. This restriction means that in some cases P4Testgen
will cover fewer paths than is otherwise possible.

6.1 P4Testgen Extensions

Tbl. 1 lists the targets we have instantiated with P4Testgen in-
cluding the v1model architecture for BMv2, the ebpf_model
for the eBPF kernel module, and the tna and t2na architec-
ture for the Tofino 1 and 2 chips. We modeled the majority of
the Tofino externs based on the P4 Tofino Native Architecture
(TNA) available in the Open-Tofino repository. [27]. Each
extension also contains support for several test frameworks.
The v1model extension supports PTF, STF, and custom Proto-
buf [30] messages. For the Tofino extensions we were given
access to an internal compiler testing framework and a variant
of PTF. The eBPF extension uses STF.

6.1.1 v1model

P4Testgen supports the v1model architecture, including ex-
terns such as recirculate, verify_checksum, and clone.

The clone extern requires P4Testgen’s entire toolbox to
model its behavior, so we explain it in detail below.

Implementing clone. The clone extern duplicates the input
packet and submits the cloned packet into the egress block of
the v1model target. It alters subsequent control flow based
on the place of execution (ingress or egress control block).
Depending on whether clone was called in the ingress or
egress control block, the content of the recirculated packet
will differ. Moreover, which user metadata is preserved in the
target depends on input arguments to clone extern.

We modeled this behavior entirely within the BMv2 exten-
sion to P4Testgen without having to modify the core code
of P4Testgen’s symbolic executor. We use the pipeline con-
trol flow and continuations to describe clone’s semantics,
concolic execution to compute the appropriate clone session
IDs, and taint tracking to guard against unpredictable input
arguments.

P4-constraints. P4Testgen’s BMv2 extension also im-
plements the P4-constraints framework [1] for v1model.
P4-constraints annotates tables to describe which control
plane entries are valid for this table. P4-constraints are
needed for programs such as middleblock.p4 [23], which
model fixed-function data center spine switches. To be able
to generate valid tests for such programs, P4Testgen must im-
plement P4-constraints. P4Testgen does so by converting
P4-constraints annotations into its own internal predicates.
These predicates are then applied as preconditions at the be-
ginning of program execution, which restricts the entries that
can be generated by P4Testgen. This also reduces the overall
number of tests generated, as discussed in §7.

6.1.2 tna/t2na

We have implemented the majority of externs for tna and
t2na, including registers, checksums, and hashes. For other
externs, such as meters, we make use of rapid prototyping us-
ing taints to support test-case generation. Our t2na extension
leverages much of the tna extension, but t2na is much richer,
so it took additional effort to model its extra capabilities. In
particular, not only does t2na attach different metadata, it
also adds a new programmable block (“ghost”) and doubles
the number of available extern functions. Both tna and t2na
are architectures for the Tofino chip family that process pack-
ets at line-rate, which makes their packet-processing pipeline
more complex and nuanced than BMv2. Packet parsing in
particular has significantly different semantics [27, §5].

Parsing packets with Tofino Tofino prepends multiple bytes
of metadata to the packet [27, §5.1]. As an Ethernet device,
it also computes and appends a 32-bit frame check sequence
for each packet. Both the metadata and frame check sequence
can be extracted by the parser but are not part of the egress
packet in the emit stage. If the packet is too short, Tofino
drops the packet in the ingress parser, but not in the egress

9

Bug Type BMv2 Tofino Total

Exception 8 9 17
Wrong Code 1 7 8

Total 9 16 25

Table 2: Bugs in targets discovered by P4Testgen.

parser [27, §5.2.1]. However, if the ingress control reads
from the parser_error metadata variable, the packet is not
dropped, but instead skips the remaining parser execution and
advances to the ingress control. The content of the header
that triggered the exception is unspecified in this case. We
model this behavior entirely in the Tofino instantiations of
P4Testgen. We treat the metadata, padded content, and frame
check sequence as tainted variables which are prepended to
the live packet L. Since Tofino’s parsing behaves slightly dif-
ferent as defined in the P4 language specification, we extend
the implementations of advance, extract, and lookahead
in the Tofino extensions to model its observed behavior.

6.1.3 ebpf_model

Both v1model and tna/t2na are switch-based. To understand
P4Testgen’s extensibility capabilities we also implemented
a proof-of-concept extension for an end-host P4 target, the
ebpf_model.p4. ebpf_model.p4 is a fairly simple target. It
only has a parser and a filter control. The filter control is
applied after the parser and there is no deparser. The eBPF
kernel target rejects a packet based on the value of the accept
parameter in the filter block. If false, the packet is dropped.
Since there is no deparser, we have to model implicit depars-
ing logic. We do so by implementing a helper function that
iterates over all headers in the packet header structure and
emits headers based on their validity. We implemented the
eBPF target in a few hours as a proof of concept and executed
all the available tests (30) in the P4C repository. Because of
the lack of maturity of the target, we did not track any bugs
in the eBPF toolchain. The experience of implementing the
eBPF extension was encouraging and we are looking into
extending our implementation to the XDP [46] back end.

7 Evaluation

Does P4Testgen produce correct tests? We want to ensure
that P4Testgen’s interpretation of the P4 and target semantics
are correct. As an oracle, P4Testgen produces input–output
tests. If these tests fail because of nondeterminism or mistakes
in P4Testgen’s semantics, they are not useful.

Hence we relied on several sources of truth to guide our
development of P4Testgen’s semantics. For the P4 semantics,
we developed our tool according to the P4 specification, also

enforced by P4C itself. For the target semantics we relied on
the software models (BMv2, Tofino model, eBPF kernel).

For each extension we selected a suite of tests and executed
them on the corresponding software target. For v1model and
ebpf_model, we selected all the P4 programs available in the
P4C test suite. For Tofino, we used the programs available in
the P4Studio SDE and a selected set of compiler tests given
to us by the Tofino compiler team. The majority of these
programs are small and easy to debug, as they are intended
to test the Tofino compiler. In total, we tested on 393 Tofino
programs, 486 BMv2 programs, and 30 eBPF programs.

We use P4Testgen to generate 10 input–output tests with a
fixed seed for each of the above programs. We then execute
these tests using the appropriate software model and test back
ends. Also, on every commit to the P4Testgen repository, we
execute P4Testgen on all 4 extensions and their test back ends
(Table 1), totaling over more than ~2000 P4 programs and 10
tests per program. We used this technique to progressively
sharpen our semantics over the course of a year, running
P4Testgen millions of times. If the execution of a test does
not lead to the output expected by P4Testgen, we investigate.
Sometimes, the compiler or the software model was at fault
and we filed a bug.

Can P4Testgen model large programs? P4Testgen is meant
to be extensible, which means it must be able to support
multiple targets. We consider our design useful if we are able
to generate tests that pass end-to-end execution for a complex,
representative program of the particular architecture.

For the v1model, we chose as representative programs
middleblock.p4 (§ 6.1.1) and up4.p4 [31], a P4 program
developed by the Open Networking Foundation (ONF) which
models the data plane of 5G networks. For tna/t2na, we gen-
erate tests for the appropriate version of switch.p4 for either
architecture. We execute the generated tests on either BMv2
or the Tofino model (a semantically accurate software model
of the Tofino chip). For each target, we generate 100 tests for
a selected test framework (STF for middleblock.p4/up4.p4,
PTF for switch.p4). The tests we have generated pass, show-
ing that we can generate valid tests for large programs.

What exactly do P4Testgen’s tests cover? As discussed in
§ 2.3, realizing a good system of target coverage is diffi-
cult. We developed our own methods to track the coverage of
P4Testgen, focusing on statement coverage.

When generating a successful test for a P4 program,
P4Testgen tracks the statements (after dead-code elimination)
it has covered with that test. Once P4Testgen has finished
generating tests, it emits a report that details the total per-
centage of statements covered and lists the statements not
covered. We use this data to identify any P4 program fea-
tures that were not exercised. For example, some program
paths may only be executable if the packet is recirculated,
which requires implementation of the corresponding extern
in P4Testgen. Tbl. 4a lists coverage we have calculated for

10

Bug label Status Type Bug description

P4C-1 Open Exception The STF test back end is unable to process keys with expressions in their name.
P4C-2 Open Exception The compiler did not correctly transform a varbit extract call with an expression as second argument.
P4C-3 Open Exception The output by the compiler was using an incorrect operation to dereference a header stack.
BMV2-1 Open Exception BMv2 crashes when accessing a header stack with an index that is out of bounds.
P4C-4 Open Exception Actions, which are missing their “name” annotation, cause the STF test back end to crash.
P4C-5 Fixed Exception A second instance where the compiler was using the wrong operation to manipulate header stacks.
P4C-6 Open Exception The compiler should have flattened a header union input for emit calls.
P4C-7 Fixed Wrong code The compiler swallowed the table.apply() of a switch case, which led to incorrect output.
P4C-8 Open Exception BMv2 can not process structure members with the same name.

Table 3: Details on BMv2 bugs found by P4Testgen. References to public issues have been anonymized.

P4 program Arch. Valid tests Time Stmt. cov.

middleblock.p4 v1model ~238k 13h 100%
up4.p4 v1model ~34k 2h 95%
switch.p4 tna >1,000k N/A 41%
switch.p4 t2na >1,000k N/A 30%

(a) P4Testgen statistics for large P4 programs.

Applied precondition Valid test paths Reduction

None 237846 0%
Fixed-size pkt. 178384 25%
P4-constraints 135719 43%
P4-constraints & fixed-size pkt. 101789 57%

(b) Effects of preconditions on the number of tests generated for
middleblock.p4. All approaches cover 100% of the program state-
ments. Fixed packet size is 1500 byte.

Table 4: Statistics on target programs.

larger P4 programs. We do not fully cover up4.p4 because
we have not yet added meter configuration to either STF or
PTF. We do not cover the case in the P4 program where the
meter extern returns a RED value, which drops the packet. For
the switch.p4 programs we list the coverage we achieved
before ceasing generation at the millionth test.

How many tests does P4Testgen generate for large pro-
grams? We also tried to exhaustively generate tests for the
chosen programs. Tbl. 4a provides an overview of the num-
ber of tests generated for each program (this number corre-
lates with the number of possible branches as modelled by
P4Testgen). Unfortunately, for the switch.p4 programs of
tna and t2na, we generate too many paths to terminate in
a reasonable amount of time. We anticipated this because
the number of unique paths increases exponentially with the
number of parser and table branches. Liu et al. [29] and
Stoenescu et al. [44] have observed similar issues.

The large number of paths is also partly caused by
P4Testgen’s extensibility goal. P4Testgen allows us to create
a detailed model of target behavior, which prompted us to
model Tofino and BMv2 externs with many potential input–

output conditions. This in turn increases the number of gener-
ated branches dramatically. Another issue causing the large
number of paths is that P4Testgen only requires an input pro-
gram. By default the tool does not reduce the input space a
priori by imposing preconditions as Meissa does.

We conducted a small experiment to measure the impact
of applying preconditions and simplified extern semantics
on middleblock.p4. We measured the number of generated
tests when fixing the input packet size (thus avoiding parser
rejects in externs) and applying SwitchV’s P4-constraints.
Tbl. 4b shows the results. The number of generated tests can
vary widely, based on these input parameters. Applying both
fixed-input packets and the P4-constraints preconditions
can reduce the number of generated tests by as much as 57%.

We have plans to make the number of generated tests
tractable. In the future, we plan to add a query mechanism
that allows users to only generate tests that cover selected
attributes, implement new path exploration strategies, and
adopt techniques that further restrict the number of possible
inputs as applied in Meissa [48].

Is P4Testgen detailed enough to find bugs? A straightfor-
ward method to demonstrate the value of a test-case oracle
such as P4Testgen is to track the number of bugs discovered
using the tool. If we can find bugs in the targets for which
P4Testgen is generating tests, this implies that the tool can
model targets with enough detail to identify discrepancies.
To find bugs, we used the workflow described in §7 and ran
P4Testgen on available sample programs. We did not execute
the tests we have generated on a hardware target and we did
not track bugs in the eBPF toolchain.

We focus only on bugs in the toolchain that executes the P4
program. We consider a toolchain bug any failing test that was
generated by P4Testgen but was not an issue with P4Testgen
itself. This includes compiler bugs as well as crashes of the
control-plane software, driver, or software simulator. In gen-
eral, we observe toolchain bugs when executing the target’s
test framework. Our tool caused two types of bugs: (1) excep-
tions, where the combination of inputs caused a crash in the
software model, test framework, or control plane software;
and (2) “wrong code,” where the test inputs did not generate

11

Tool Generation
method

No extra
input?

Target
agnostic

Target-
specific
semantics

Gauntlet [39] Symbex ✓ ✓ ×
Meissa [48] Symbex × × ✓
SwitchV [1] Hybrid × × ✓
Petr4 [13] Symbex × ✓ ✓
p4pktgen [33] Symbex ✓ × ×
PTA [5] Fuzzing × ✓ ×
DBVal [28] Fuzzing × ✓ ×
FP4 [47] Fuzzing × ✓ ×
P4Testgen Symbex ✓ ✓ ✓

Table 5: Tools that test the P4 toolchain.

the expected output. Tbl. 2 summarizes the bugs we have
found in the two targets. Tbl. 3 provides details on the bugs
we have filed for BMv2. For confidentiality reasons, we are
unable to discuss the Tofino 1 and 2 bugs in detail.

The causes of these toolchain bugs are diverse. Bugs may
either be mistranslations in the compiler back end, an in-
correct implementation of the software model, or errors in
the control plane software and test framework. Any type of
bug was considered significant. Issues we filed were quickly
assigned to a responsible engineer.

Overall, we found more issues with Tofino than with BMv2.
The explanation for this is two-fold. First, Tofino is a real
hardware target with significantly more features (both externs
and pipeline capabilities) and a complex tool chain. Hence,
issues are more likely to emerge than on BMv2, which is
smaller, simpler, and a software target. Second, we focused
our bug-tracking efforts on the Tofino targets and treated
BMv2 issues with lower priority. We have invested less effort
into generating tests for the BMv2 test suite compared to the
examined Tofino programs.

For Tofino, several of our issues either anticipated a bug
that was later filed by a customer or reproduced an existing
bug that was still open (we only include novel bugs in our
count). Some programs already had packet tests associated
with them, but these tests were not able to catch the bugs we
filed. P4Testgen found these bugs because prior tests did not
achieve the same coverage.

8 Related Work

Verifying P4 programs.
A number of tools have been recently proposed to help

programmers verify that a P4 program satisfies a formal
specification. Tools in this domain typically rely on as-
sertions inserted into the program that capture relational
properties—e.g., the program does not read or write invalid
headers [14, 15, 24, 29, 42–45]. P4Testgen is orthogonal to
this line of work. It produces tests for a P4 program but does
not check the correctness of the program itself.

Petr4 [13] provides formal semantics for P4 and a reference
interpreter. Like P4Testgen, Petr4 also supports an extension
model that allows the addition of target-specific semantics.
However, it does not support automatic test case generation
and does not aim to provide path coverage.

Testing P4 toolchains. Several tools focus on validating P4
implementations. Many of these rely on differential testing,
comparing the system under test’s output to a second system’s
output. Tbl. 5 provides a summary. Compared to P4Testgen,
these tools are typically tailored to a single target device
or use case. Also, because P4Testgen relies on semantics
to produce both inputs and outputs, we avoid the overhead
of running a second, independent, system to produce the
reference output [1].

p4pktgen [33] is a symbolic executor that automatically
generates tests. It focuses on the v1model, STF tests,
and BMv2. However, p4pktgen is incomplete: it does
not implement all aspects of the P4 language and v1model
architecture—its capabilities as a test oracle are limited.

SwitchV [1] is a project that uses differential testing to
find bugs in switch software. It automatically derives input
packets from a fixed-function switch specification written in
P4, feeds the derived inputs into both a fixed-function switch
and a reference software model, then compares the outputs to
check for bugs. SwitchV uses fuzzing and symbolic execution
to generate inputs that cover a wide range of execution paths.
To limit the range of possible inputs, the tool relies on pre-
defined table rules and the P4-constraints framework. Like
p4pktgen, SwitchV is specialized towards the v1model and
only tests against BMv2.

Meissa [48] is a symbolic executor specialized to the Tofino
target, which can generate input–output tests using pre- and
post-conditions specified in the LPI [45] language. The tool is
designed for scalability and uses techniques such as fixed in-
put table rules, code summary for multi-pipe Tofino programs,
and path pruning to eliminate invalid paths according to the in-
put specification. Meissa is not publicly available, precluding
a direct comparison with P4Testgen. As mentioned before,
P4Testgen could incorporate Meissa’s techniques to reduce
the number of tests it generates for a large P4 program.

Gauntlet [39] uses a form of model-based testing to gen-
erate input–output tests. Gauntlet is target-independent but
can only generate tests according to the P4 specification; it
does not implement whole-program semantics to describe the
semantic model of the target under test.

PTA [5] and DBVal [28] both implement a target-
independent test framework designed to uncover bugs in the
P4 toolchain. Both PTA and DBVal augment the P4 program
under test with extra assertions to validate the correct execu-
tion of the pipeline at runtime. Both projects provide only
limited support for test-case generation. In general, develop-
ers are expected to write their own unit tests.

FP4 [47] is a target-independent fuzzing tool that uses a
second switch as a fuzzer to test the implementation of a P4

12

program. FP4 automatically generates the necessary table
rules and input packet headers to hit unique action paths in
the program. It tracks the actions that were executed for an
input packet by adding an extra header to the program under
test. However, to validate whether an output packet is correct,
FP4 requires custom annotations in the P4 program. Hence,
it does not act as a general test oracle.

9 Conclusion

P4Testgen is a new P4 test-case generation oracle that al-
lows users to produce input–output tests for their own tar-
get. P4Testgen provides whole-program semantics for P4,
and handles the full behavior of real-world targets including
v1model, tna, t2na, and ebpf_model. Going forward, using
P4Testgen as a base, we would like to develop additional
tools for the P4 language. These tools can adapt several ideas
from software testing such as random program generation,
mutation testing, program verification, and compiler valida-
tion and apply these techniques to P4 using domain-specific
optimizations. We also believe there is more work to be done
on domain-specific notions of test coverage. In particular,
statement coverage only tracks if all P4 program statements at
the source level have been covered. It doesn’t track whether
all possible behaviors of the underlying target have been exer-
cised. To track target behavior, it would be helpful to define
a notion like extern coverage, which tracks whether all pos-
sible functionality of an extern has been exercised. Since
P4Testgen is a community-driven effort, we also welcome
contributions from the broader community to improve and
extend its functionality.

References

[1] Kinan Dak Albab, Jonathan Dilorenzo, Stefan Heule,
Ali Kheradmand, Steffen Smolka, Konstantin Weitz,
Muhammad Tirmazi, Jiaqi Gao, and Minlan Yu.
SwitchV: Automated SDN switch validation with P4
models. In ACM SIGCOMM, 2022. 1, 2, 3, 9, 12

[2] Antonin Bas. PTF: Packet testing framework. https:
//github.com/p4lang/ptf. Accessed: 2022-09-20.
2, 5

[3] Antonin Bas. The reference P4 software switch. ht
tps://github.com/p4lang/behavioral-model.
Accessed: 2022-09-20. 1

[4] Scott Bradner and Jim McQuaid. Benchmarking
methodology for network interconnect devices (RFC
2544). IETF Request For Comments, 1999. 2

[5] Pietro Bressana, Noa Zilberman, and Robert Soulé.
Finding hard-to-find data plane bugs with a PTA. In
ACM CoNEXT, 2020. 2, 12

[6] Mihai Budiu. The P416 reference compiler implementa-
tion architecture. https://github.com/p4lang/p4c/
blob/master/docs/compiler-design.pptx, 2018.
Accessed: 2022-09-20. 2, 5

[7] Mihai Budiu and Chris Dodd. The P416 programming
language. ACM SIGOPS Operating Systems Review,
2017. 1

[8] The P4.org consortium. The p4runtime specification,
version 1.3.0. https://p4.org/p4-spec/p4runtime
/v1.3.0/P4Runtime-Spec.html, December 2020. 1

[9] The P4.org consortium. The P416 language specifica-
tion, version 1.2.3. https://p4.org/p4-spec/docs/
P4-16-v-1.2.3.html, July 2022. 1, 3, 9

[10] Intel Corporation. Industry-first co-packaged optics
Ethernet switch. https://www.intel.com/content/
www/us/en/products/network-io/programmable
-ethernet-switch.html. Accessed: 2022-09-20. 1, 2

[11] Intel Corporation. The infrastructure processing unit
(IPU). https://www.intel.de/content/www/de/de
/products/network-io/smartnic.html. Accessed:
2022-09-20. 1

[12] Leonardo De Moura and Nikolaj Bjørner. Z3: An
efficient SMT solver. In International conference on
Tools and Algorithms for the Construction and Analysis
of Systems, 2008. 8

[13] Ryan Doenges, Mina Tahmasbi Arashloo, Santi-
ago Bautista, Alexandar Chang, Newton Ni, Sam-
wise Parkinson, Rudy Peterson, Alaia Solko-Breslin,
Amanda Xu, and Nate Foster. Petr4: Formal founda-
tions for P4 data planes. In ACM POPL, 2021. 2, 5,
12

[14] Dragos Dumitrescu, Radu Stoenescu, Lorina Negreanu,
and Costin Raiciu. bf4: Towards bug-free P4 programs.
In ACM SIGCOMM, 2020. 1, 12

[15] Dragos Dumitrescu, Radu Stoenescu, Matei Popovici,
Lorina Negreanu, and Costin Raiciu. Dataplane equiva-
lence and its applications. In USENIX NSDI, 2019. 1,
12

[16] Andy Fingerhut. Behavioral model targets. https:
//github.com/p4lang/behavioral-model/blob/
master/targets/README.md, 2018. Accessed: 2022-
09-20. 2

[17] Andy Fingerhut. The bmv2 simple switch target. ht
tps://github.com/p4lang/behavioral-model/b
lob/main/docs/simple_switch.md, 2022. Accessed:
2022-09-20. 16

13

https://github.com/p4lang/ptf
https://github.com/p4lang/ptf
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/p4c/blob/master/docs/compiler-design.pptx
https://github.com/p4lang/p4c/blob/master/docs/compiler-design.pptx
https://p4.org/p4-spec/p4runtime/v1.3.0/P4Runtime-Spec.html
https://p4.org/p4-spec/p4runtime/v1.3.0/P4Runtime-Spec.html
https://p4.org/p4-spec/docs/P4-16-v-1.2.3.html
https://p4.org/p4-spec/docs/P4-16-v-1.2.3.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.de/content/www/de/de/products/network-io/smartnic.html
https://www.intel.de/content/www/de/de/products/network-io/smartnic.html
https://github.com/p4lang/behavioral-model/blob/master/targets/README.md
https://github.com/p4lang/behavioral-model/blob/master/targets/README.md
https://github.com/p4lang/behavioral-model/blob/master/targets/README.md
https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.md
https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.md
https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.md

[18] Open Networking Foundation. PINS: P4 integrated
network stack. https://opennetworking.org/pin
s/. Accessed: 2022-09-20. 1

[19] Open Networking Foundation. TDI: Table driven inter-
face. https://github.com/p4lang/tdi. Accessed:
2022-09-20. 1

[20] The Linux Foundation. eBPF: Introduction, tutorials &
community resources. https://ebpf.io/. Accessed:
2022-09-20. 2

[21] The Linux Foundation. IPDK: The infrastructure devel-
opment kit. https://ipdk.io/. Accessed: 2022-09-
20. 1

[22] The Linux Foundation. SONIC: Software for open
networking in the cloud. https://sonic-net.gith
ub.io/SONiC/. Accessed: 2022-09-20. 1

[23] The Linux Foundation. middleblock.p4. https://
github.com/sonic-net/sonic-pins/blob/main/
sai_p4/instantiations/google/middleblock.p4,
2021. Accessed: 2022-09-20. 9

[24] Lucas Freire, Miguel Neves, Lucas Leal, Kirill
Levchenko, Alberto Schaeffer-Filho, and Marinho Bar-
cellos. Uncovering bugs in P4 programs with assertion-
based verification. In ACM SOSR, 2018. 1, 12

[25] Patrice Godefroid, Nils Klarlund, and Koushik Sen.
DART: Directed automated random testing. In ACM
POPL, 2005. 2, 8

[26] Enisa Hadzic. Added support for assert and assume
primitives in bm_sim. https://github.com/p4lan
g/behavioral-model/pull/762, 2022. Accessed:
2022-09-20. 16

[27] Intel Corporation. P4-16 Intel Tofino Native Architec-
ture - Public Version, 2022. https://github.com/b
arefootnetworks/open-tofino. Accessed: 2022-09-
20. 9, 10, 16

[28] K Shiv Kumar, PS Prashanth, Mina Tahmasbi Arashloo,
Venkanna U, and Praveen Tammana. DBVal: Validating
p4 data plane runtime behavior. In ACM SOSR, 2021.
2, 12

[29] Jed Liu, William Hallahan, Cole Schlesinger, Milad
Sharif, Jeongkeun Lee, Robert Soulé, Han Wang, Călin
Caşcaval, Nick McKeown, and Nate Foster. p4v: Practi-
cal verification for programmable data planes. In ACM
SIGCOMM, 2018. 1, 4, 11, 12

[30] Google LLC. Protocol buffers. https://developers
.google.com/protocol-buffers, 2022. Accessed:
2022-09-20. 9

[31] Robert MacDavid, Carmelo Cascone, Pingping Lin,
Badhrinath Padmanabhan, Ajay Thakur, Larry Peter-
son, Jennifer Rexford, and Oguz Sunay. A P4-based 5G
user plane function. In ACM SOSR, 2021. 10

[32] Extreme Networks. Extreme 9920: Cloud-native net-
work visibility platform. https://www.extremenet
works.com/product/extreme-9920/. Accessed:
2022-09-20. 2

[33] Andres Nötzli, Jehandad Khan, Andy Fingerhut, Clark
Barrett, and Peter Athanas. p4pktgen: Automated test
case generation for P4 programs. In ACM SOSR, 2018.
1, 2, 4, 12

[34] Orange. psabpf - in-kernel p4 software switch. https:
//github.com/P4-Research/psabpf. Accessed:
2022-09-20. 1

[35] Ben Pfaff, Debnil Sur, Leonid Ryzhyk, and Mihai Budiu.
P4 in open vswitch with ofp4. https://opennetwor
king.org/wp-content/uploads/2022/05/Ben-Pf
aff-Final-Slide-Deck-Tech-Brief-1.pdf, 2021.
Accessed: 2022-09-20. 1

[36] Open Compute Project. SAI: Switch abstraction inter-
face. https://www.opencompute.org/projects/s
ai. Accessed: 2022-09-20. 1

[37] John C. Reynolds. The discoveries of continuations.
LISP and Symbolic Computation, 1993. 6

[38] Fabian Ruffy. Question about expected output when
all headers are invalid. https://github.com/p4lan
g/behavioral-model/issues/977, 2021. Accessed:
2022-09-20. 7, 16

[39] Fabian Ruffy, Tao Wang, and Anirudh Sivaraman.
Gauntlet: Finding bugs in compilers for programmable
packet processing. In USENIX OSDI, 2020. 2, 5, 12

[40] Edward J Schwartz, Thanassis Avgerinos, and David
Brumley. All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but might
have been afraid to ask). In IEEE S&P, 2010. 7

[41] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A
concolic unit testing engine for C. In ACM ESEC/FSE,
2005. 2, 8

[42] Apoorv Shukla, Kevin Hudemann, Zsolt Vági, Lily
Hügerich, Georgios Smaragdakis, Stefan Schmid, Artur
Hecker, and Anja Feldmann. Towards runtime ver-
ification of programmable switches. arXiv preprint
arXiv:2004.10887, 2020. 1, 12

[43] Apoorv Shukla, Kevin Nico Hudemann, Artur Hecker,
and Stefan Schmid. Runtime verification of p4 switches

14

https://opennetworking.org/pins/
https://opennetworking.org/pins/
https://github.com/p4lang/tdi
https://ebpf.io/
https://ipdk.io/
https://sonic-net.github.io/SONiC/
https://sonic-net.github.io/SONiC/
https://github.com/sonic-net/sonic-pins/blob/main/sai_p4/instantiations/google/middleblock.p4
https://github.com/sonic-net/sonic-pins/blob/main/sai_p4/instantiations/google/middleblock.p4
https://github.com/sonic-net/sonic-pins/blob/main/sai_p4/instantiations/google/middleblock.p4
https://github.com/p4lang/behavioral-model/pull/762
https://github.com/p4lang/behavioral-model/pull/762
https://github.com/barefootnetworks/open-tofino
https://github.com/barefootnetworks/open-tofino
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://www.extremenetworks.com/product/extreme-9920/
https://www.extremenetworks.com/product/extreme-9920/
https://github.com/P4-Research/psabpf
https://github.com/P4-Research/psabpf
https://opennetworking.org/wp-content/uploads/2022/05/Ben-Pfaff-Final-Slide-Deck-Tech-Brief-1.pdf
https://opennetworking.org/wp-content/uploads/2022/05/Ben-Pfaff-Final-Slide-Deck-Tech-Brief-1.pdf
https://opennetworking.org/wp-content/uploads/2022/05/Ben-Pfaff-Final-Slide-Deck-Tech-Brief-1.pdf
https://www.opencompute.org/projects/sai
https://www.opencompute.org/projects/sai
https://github.com/p4lang/behavioral-model/issues/977
https://github.com/p4lang/behavioral-model/issues/977

with reinforcement learning. In Proceedings of the 2019
Workshop on Network Meets AI & ML, 2019. 12

[44] Radu Stoenescu, Dragos Dumitrescu, Matei Popovici,
Lorina Negreanu, and Costin Raiciu. Debugging P4
programs with Vera. In ACM SIGCOMM, 2018. 1, 4,
11, 12

[45] Bingchuan Tian, Jiaqi Gao, Mengqi Liu, Ennan Zhai,
Yanqing Chen, Yu Zhou, Li Dai, Feng Yan, Mengjing
Ma, Ming Tang, et al. Aquila: a practically usable
verification system for production-scale programmable
data planes. In ACM SIGCOMM, 2021. 1, 3, 12

[46] William Tu, Fabian Ruffy, and Mihai Budiu. P4C-XDP:
Programming the linux kernel forwarding plane using
P4. In Linux Plumbers Conference, 2018. 10

[47] Nofel Yaseen, Liangcheng Yu, Caleb Stanford, Ryan
Beckett, and Vincent Liu. FP4: Line-rate grey-
box fuzz testing for p4 switches. arXiv preprint
arXiv:2207.13147, 2022. 1, 2, 3, 12

[48] Naiqian Zheng, Mengqi Liu, Ennan Zhai,
Hongqiang Harry Liu, Yifan Li, Kaicheng Yang,
Xuanzhe Liu, and Xin Jin. Meissa: Scalable network
testing for programmable data planes. In ACM
SIGCOMM, 2022. 1, 2, 3, 4, 11, 12

15

A Appendix

A.1 Target Implementation Details

tna/t2a target detail

+ tna has ~48 extern functions and 6 programmable blocks [27]. t2na has over a 100 externs and 7 programmable blocks.
+ Tofino 2 adds a programmable block, the ghost thread. This programmable block can insert control plane entries and manipulate program
state in parallel to the packet traversing the program.
+ Packets that are too short are dropped in the Tofino parser, unless Tofino’s ingress control reads the parser error variable. Then the packet
header causing an exception is in an unspecified state [27, §5.2.1]. Tofino 2 will not execute the extract call.
+ The packet defined in the test is not the packet that the parser will receive. Tofino 1 and 2 prepend 128-256 bits of metadata to the
packet [27, §5.1]. The software model also appends an Ethernet frame check sequence that is 32 bits wide. The parser can parse these
values into P4 data structures.
+ If the egress port variable is not written in the P4 program, the packet is automatically considered dropped [27, §5.1].
+ Output ports in Tofino have different semantics. Some forward the packet to the CPU, some drop the packet, some recirculate the packet,
some forward to an output port. The mapping of the ports can be configured [27, §5.7].
+ Packets must have a minimum size of 64 bytes. Otherwise, the packet will be dropped [27, §7.2]. The exception to this rule are packets
injected from the Tofino CPU.
+ Tofino has many annotations that can affect the semantics of the program. For example, the flexible and padding annotations can
reduce/expand the size of the P4 metadata structure, which can affect the size of the output packet [27, §11]. auto_init_metadata will
initialize all otherwise random metadata to 0 at the beginning of the program.
+ Tofino has a notation of direct and indirect externs. Direct externs are attached to tables and can update register values in place. Indirect
externs are only able to update register values from packet to packet. Reading and writing these externs on the same packet has no
effect [27, §7.1].
+ The Tofino compiler removes all fields that are not read in the P4 program from the egress metadata structure.
+ Control plane keys in Tofino may contain dollar signs ($). These have to be rewritten because not every control plane framework
considers these valid.
+ Tofino has a metadata variable bypass_egress that tells the traffic manager to skip egress processing entirely [27, §5.6].
+ Tofino has a metadata variable mtu_truncate, which truncates the emitted packet to the size as specified by the metadata variable.

v1model target detail

+ v1model has ~26 extern functions and 6 programmable blocks [17].
+ BMv2’s default output port is 0 [17]. BMv2 drops packets when the egress port is 511.
+ Packets that are smaller than 14 bytes in the behavioral model produce a curious sequence of hex output (02000000) [38].
+ BMv2 supports a special technique to preserve metadata when recirculating a packet. Only the metadata that is annotated with field_list
and the correct index is preserved [17].
+ BMv2 supports the assume/assert externs which can cause BMv2 to terminate abnormally [26].
+ BMv2’s clone extern behaves differently depending on the location it was called in the pipeline. If recirculated in ingress, the cloned
packet will have the values after leaving the parser and is directly sent to egress. If cloned in egress, the recirculated packet will have the
values after it was emitted by the deparser [17].
+ BMv2 has an extern that takes the payload into account for checksum calculation. This means you always have to synthesize a payload
for this extern [17].
+ A parser error in BMv2 does not drop the packet. The header that caused the error will be invalid and execution skips to ingress [17].
+ All uninitialized variables are implicitly initialized to 0 or false in BMv2.
+ Some v1model programs include P4-constraints, which limits the types of control plane entries that are allowed for a particular table.
+ The table implementation in BMv2 supports the priority annotation, which changes the order of evaluation of constant table entries.

ebpf_model target detail

+ ebpf_model has 2 extern functions and 2 programmable blocks.
+ The eBPF target does not have a deparser that uses emit calls. It can only filter.
+ extract or advance have no effect on the size of the outgoing packet.
+ A failing extract or advance in the eBPF kernel automatically drops the packet.

Table 6: A nonexhaustive collection of target implementation details that require P4Testgen’s use of whole-program semantics.
Where possible, we cited a source. Some details are not explicitly documented.

16

	1 Introduction
	2 Motivation
	2.1 Why Automate Test-Case Generation?
	2.2 Who Can Use P4Testgen?
	2.3 What Are the Concrete Challenges?
	2.4 What Are P4Testgen's Coverage Goals?

	3 P4Testgen in Action
	4 P4Testgen Overview
	5 Whole-Program Semantics
	5.1 The Pipeline Template
	5.1.1 Pipeline State
	5.1.2 Pipeline Control Flow

	5.2 Accommodating Target-Specific Behavior
	5.2.1 P4Testgen's Approach to Packet-Sizing

	5.3 Controlling Unpredictable Behavior
	5.4 Supporting Complex Functions

	6 Implementation
	6.1 P4Testgen Extensions
	6.1.1 v1model
	6.1.2 tna/t2na
	6.1.3 ebpf_model

	7 Evaluation
	8 Related Work
	9 Conclusion
	A Appendix
	A.1 Target Implementation Details

