
Defining and Enforcing Referential Security

Jed Liu Andrew C. Myers

Department of Computer Science
Cornell University

Ithaca, New York, United States
liujed@cs.cornell.edu andru@cs.cornell.edu

Abstract. Referential integrity, which guarantees that named resources can be
accessed when referenced, is an important property for reliability and security.
In distributed systems, however, the attempt to provide referential integrity can
itself lead to security vulnerabilities that are not currently well understood. This
paper identifies three kinds of referential security vulnerabilities related to the ref-
erential integrity of distributed, persistent information. Security conditions cor-
responding to the absence of these vulnerabilities are formalized. A language
model is used to capture the key aspects of programming distributed systems
with named, persistent resources in the presence of an adversary. The referential
security of distributed systems is proved to be enforced by a new type system.

1 Introduction
To make programming manageable, distributed systems are increasingly being imple-
mented using high-level languages and libraries that present distributed resources as
language-level objects. This approach goes back to research platforms such as Ar-
gus [14], Emerald [4], and Network Objects [3], but is now applied widely in commer-
cial programming using middleware platforms such as CORBA [19], in more recent
object-relational mapping (ORM) systems such as Hibernate [10] and other Java Per-
sistence API (JPA) [6] implementations, and in modern JavaScript ORM libraries [5].

Distributed systems naturally cross trust domains; it is often why they are distributed
in the first place. Running a program on a federated platform composed of differently
trusted distributed nodes creates security vulnerabilities that are not immediately appar-
ent at the high level of abstraction at which the programmer is operating. Some of these
vulnerabilities have been addressed by prior work; for example, the Fabric system [15]
provides a high-level, Java-like abstraction for distributed programming, while using
information-flow control to enforce both confidentiality and integrity properties.

In this paper, we identify three new security goals relating to the security of refer-
ences that cross trust domains. Cross-domain references are a common feature not only
of high-level distributed programming models, but of distributed systems in general.
For example, web pages hyperlink to other pages, and relational-database tuples can
contain foreign keys referring to other tuples. Regardless of the kind of system, secu-
rity and reliability vulnerabilities are created when references cross trust boundaries,
because they introduce dependencies between different parts of the system. This pa-
per identifies some of these referential vulnerabilities, formally characterizes them, and
explores a language-based approach to modeling, analyzing, and preventing them.

The first goal is referential integrity. A system has referential integrity if a refer-
ence can be relied upon to continue pointing to the same object. Referential integrity
fails when that object is deleted while the reference still exists, resulting in a dangling
reference, or when the reference points to a different object altogether.

Referential integrity appears in many guises. We use the term in a more general
sense than in the database literature, where referential integrity is an important aspect
of the relational model [7]. For example, the web lacks referential integrity: the referent
of a hyperlink can be deleted, leading to the familiar “404” error. Referential integrity
is also an important property for programming languages. In languages such as C that
lack referential integrity, dangling pointers are a serious problem. In other languages,
automatic garbage collection reclaims memory while preserving referential integrity.

While absolute referential integrity sounds ideal, it cannot be achieved in a federated
system: referential integrity is necessarily limited by the trustworthiness of the node (or
nodes) storing the referent object. Therefore, this paper generalizes referential integrity
to systems where nodes are partially trusted.

Our second goal is intentional persistence. With referential integrity, a reference to
an object is a promise that the object will not move or disappear: it must be persistent.
Therefore, reachability implies persistence, as in various object-oriented databases (e.g.,
[1,17]) and in marshaling mechanisms such as Java serialization. However, if all reach-
able objects are persistent, objects can become accidentally persistent because they are
unexpectedly reachable. This can inflate resource consumption, leading to poor per-
formance and system failure. This problem is familiar to those who have used Java
serialization. Intentional persistence entails the absence of accidental persistence.

The third goal of this paper is immunity against storage attacks. Referential integrity
prevents discarding reachable objects. But this gives an adversary a means to mount
a denial-of-service attack. The adversary creates references to objects intended to be
discarded, preventing reclamation and perhaps exhausting available storage space.

This paper formalizes these three goals as referential security properties, corre-
sponding to the absence of referential vulnerabilities. This is done in the context of a
simple programming language that captures the key elements of distributed program-
ming in a federated system with persistent information and pointers. A novel type sys-
tem is defined and is proved to enforce these security properties. Details of these proofs
are found in an accompanying technical report [16].

The rest of this paper is structured as follows. Section 2 describes the language
model. Section 3 presents security policies for reasoning about the three vulnerabilities.
Section 4 introduces the programming language λpersist, which abstractly describes dis-
tributed programming with persistence and distrust. The language is defined formally
in Sections 5 and 6. Section 7 defines the adversary model. Section 8 formalizes the de-
sired security conditions, and sketches the proofs that the type system of λpersist soundly
enforces them. Related work is discussed in Section 9, and Section 10 concludes.

2 Language model
2.1 Modeling distributed computing as a language
We model distributed computing using a core programming language that we call λpersist.
In λpersist, persistence, distribution, and communication are implicit but are constrained

Fig. 1. Directory example

by policy annotations. Programs in λpersist are assumed to be mapped onto distributed
host nodes in some way that agrees with these annotations. This mapping could be done
manually by the programmer, or automatically by a compiler, à la Jif/split [23].

This implicit translation to a distributed implementation means that some apparently
ordinary source-level operations may be implemented using distributed communication
and computation. For example, function application may be implemented as a remote
procedure call. Similarly, following references at the language level may involve com-
munication between nodes to fetch referenced objects.

Although the concrete mapping from source-level constructs onto host nodes is left
implicit, we can nevertheless faithfully evaluate the security of source-level computa-
tions. The key is to ensure that the system is secure under any possible concrete mapping
that is consistent with the policy annotations in the source program. That is, any given
computation or information might be located on any host that satisfies the source-level
security constraints. A technical contribution of this paper is to develop an effective
system of such source-level constraints, expressed as a type system.

Although we refer to λpersist as a source language, little attempt is made to make it
congenial to actual programming. In particular, the type annotations introduced would
be onerous in practice. They could be inferred automatically using standard constraint-
solving techniques for inequations over L, but we leave this to future work. One can
view the type system as describing a program (or system) analysis, and the formal
results of this paper as a demonstration that this analysis achieves its security goals.

2.2 Objects and references
Persistent objects are modeled in λpersist as records with mutable fields. The fields of an
object can point to other objects through references. References contain the names of
these mutable objects. References are not assignable as in ML [18]; imperative updates
are achieved by assigning to mutable fields.

The language has two types of references: hard and soft. A hard reference is one
with referential integrity: a promise that the referenced object will not be destroyed
if its host is trustworthy. A soft reference does not create an obligation to maintain

the referenced object. Hard links in Unix and references in Java are examples of hard
references. URLs, Unix symbolic links, and Java SoftReference objects are examples
of soft references. The language models a garbage collector that may destroy objects
reachable only via soft references. When following a soft reference or an untrusted hard
reference, a program must be prepared to handle a failure in case the referenced object
no longer exists.

This simple data model can represent many different kinds of systems, such as dis-
tributed objects, databases, and the web. The shared directory structure shown in Fig-
ure 1 serves as a running example. Alice and Bob are traveling together and are using
the system to share photos and itineraries. The root directory is kept on a host R. Alice
and Bob keep their directory objects on their own hosts, A and B, respectively. To share
sightseeing ideas, they use a common scratchpad stored on host U. Solid arrows in the
figure represent hard references, and dashed arrows are soft references. The a and p
annotations are policies, which we now explain.

3 Policies for persistent programming
3.1 Persistence policies
In a federated system, referential integrity cannot be absolute, because the referenced
object may be located on an untrusted, perhaps maliciously controlled, host machine.
Therefore, referential integrity must be constrained by the degree of trust in the refer-
enced host. This constraint is expressed by assigning each object a persistence policy
describing how much it can be trusted to remain in existence.

The precise form of the persistence policy is left abstract in this paper. Persistence
policies p are assumed to be drawn from a bounded lattice (L,≼,�,⊺) of policy levels.
If p1 ≼ p2 for two persistence policies p1 and p2, then p2 describes objects that are at
least as persistent as those described by p1.

Persistence policies have a simple, concrete interpretation. Absent replication, ob-
jects are located only on host nodes that are trusted to enforce their persistence policies,
so a persistence policy p corresponds to a set of sufficiently trusted host nodes Hp.
Therefore, if p1 ≼ p2, then p2 must be enforceable by a smaller set of hosts: Hp1 ⊇ Hp2 .
In fact, it is reasonable to think of a policy p as simply a set of hosts.

In Figure 1, the root directory has persistence policy ⊺, which only host R is trusted
to enforce. Alice has a user directory and a persistence policy alice. While R is trusted
to enforce this policy, she has chosen to use her own host A. Similarly, Bob’s directory
is on host B. The shared scratchpad is kept on an untrusted host U, which can only
enforce the persistence policy �.

Persistence policies are integrated into the type system of λpersist. The type of an
object reference includes a lower bound on the persistence policy of its referent; the
type system ensures that the persistence of an object is always at least as high as that of
any reference pointing to it. Programs can therefore use the persistence of a reference
to determine whether the reference can be trusted to be intact. This rule enables sound
reasoning about persistence and referential integrity as the graph of objects is traversed.

For example, in Figure 1, while Alice and Bob both have a hard reference to the
scratchpad, they must be prepared for a persistence failure when using the references.
The type system of λpersist will ensure their code handles such a failure. Any reference

to the scratchpad must have a type with � persistence, because it can be no higher than
the � persistence of the scratchpad itself.

Whether a hard reference can be trusted to be intact depends on context. In Figure 1,
Alice and Bob both have a hard reference to the itinerary. Because Alice trusts her own
persistence level, if either reference is typed with alice persistence, then she can use
it without worrying about a persistence failure. However, unless Bob trusts Alice, he
would need to be prepared for such a failure when using the references.

Soft references also have types with persistence levels, and hence might be trusted.
Trusted soft references can be promoted to trusted hard references. Therefore, soft ref-
erences are distinct from untrusted hard references.

In λpersist, persistence is defined not by reachability, but by policy. This resolves by
fiat one of the three problems identified earlier: accidental persistence. Accidents are
avoided by allowing programmers to express their intention explicitly. An object that is
not intended to be persistent is prevented from being treated as a persistent object.

3.2 Characterizing the adversary
Security involves an adversary, and is always predicated on assumptions about the
power of the adversary. In the kind of decentralized, federated system under consid-
eration, the adversary is assumed to control some of the nodes in the system.

Different participants in a distributed system may have their own viewpoints about
who the adversary is, yet all participants need security assurance. Therefore, a given
adversary is modeled as a point α in the lattice of persistence policy levels. In the
host-set interpretation of persistence policies, α defines the set of trusted hosts that the
adversary does not control. The adversary is assumed to have the power to delete (i.e.,
violate the persistence of) an object if its persistence is not α or higher (i.e., α /≼ p),
because the object might be stored at a host node controlled by the adversary. Other
actions by the adversary are modeled by special evaluation rules (see Section 7).

The formal results for the security properties enforced by λpersist treat the adversary
as an arbitrary parameter. Therefore, these properties hold for any adversary.

3.3 Storage attacks and authority policies
We introduce the idea of storage attacks, in which a malicious adversary tries to prevent
reclamation of object storage by exploiting the enforcement of referential integrity. For
example, in Figure 1, Bob has shared with Alice an album containing the photos he
has so far taken during their trip. Bob does not consider the album to be private, so
others may create references to his album, as Alice has done. However, an adversary
that creates a hard reference to this album can prevent Bob from reclaiming its storage.

To prevent such storage attacks, we ensure that hard references can be created only
in sufficiently trusted code. We introduce creation authority to abstractly define this
power to create new references. This is the only action requiring some form of authority
in this paper, so for brevity, we refer to creation authority simply as authority.

Like persistence policies, authority policies a are assumed to be drawn from a
bounded lattice (L,≼) of policy levels. Without loss of expressive power, they are as-
sumed to be drawn from the same lattice as persistence policies. Authority prevents
storage attacks because hard references can only be created to objects whose authority
policy a is less than or equal to the authority ap of the process; that is, a ≼ ap.

A hard reference is a reference that should have referential integrity, so creating
hard references requires authority. The adversary is assumed to have some ability to
create hard references, described by its authority level α. Soft references do not keep an
object alive, so no creation authority is required to create a soft reference.

In Figure 1, the root directory has the authority policy �, so anyone can create a hard
reference to it. Bob’s philly album is large, so he has given it the authority policy bob;
only he can create hard references that prevent the album from being deleted. Therefore,
Alice’s reference to the album must be soft. Alice has drafted an itinerary, giving it the
authority policy {alice,bob} to indicate she will persist the document for as long as Bob
requires. Bob’s reference to the itinerary, therefore, can be hard.

It may sound odd to posit control over creation of references. But a reference with
referential integrity is a contract between the referrer and the referent. For example,
the node containing the referent is obligated to notify the referrer if the object moves.
Entering into a contract requires agreement by both parties, so it is reasonable for the
node containing the referent to refuse the creation of a reference.

3.4 Integrity
Thus far, the powers of the adversary include creating references to low-authority ob-
jects and destroying objects with low persistence. Because the adversary may control
some nodes, the adversary can also change the state of objects located at these nodes.
This may in turn affect code running on nodes not controlled by the adversary, if the
adversary supplies inputs to that code, or if it affects the decision to run that code.

Integrity policies describe limitations on these effects of the adversary. Integrity
policies w are drawn from a bounded lattice (L,≼) of policy levels; without loss of
expressive power, it is assumed to be the same lattice as for persistence and authority
policies. In fact, we can think of the persistence and authority levels of an object as the
integrity of other, implicit attributes of the object. For persistence, this implicit attribute
is the existence of the object itself. For authority, the attribute is the set of incoming
references to the object. This unifying view of different policies as different aspects of
integrity explains why all three kinds of policies can come from the same lattice.

The ordering ≼ corresponds to increasing integrity. If w1 ≼ w2, an information flow
from level w2 to w1 would be secure: more-trusted information would be affecting less-
trusted information.1 In λpersist, each variable and each field of an object has an associ-
ated integrity level describing how trusted it is, and hence how powerful an adversary
must be to damage it. The integrity of a reference is the integrity of the field or variable
it was read from.

Figure 2 summarizes the interpretation of the three kinds of policies.

3.5 Integrity of dereferences and garbage collection
An adversary can directly affect the result of a dereference in two ways. First, if the ref-
erence has low integrity, the adversary can alter it to point to a different object. Second,
if the referent has low persistence, the adversary can delete it. Therefore, the integrity
of any dereference can be no higher than the integrity and persistence annotations on

1 This ordering is the opposite of the “upside-down” ordering typically seen in work on
information-flow security [2].

Integrity Authority Persistence Set of hosts

⊺
“High”

Trusted, Untainted: “superuser”: Persistent:
No host nodesNo one No one can make No one can

can affect data a hard reference delete object

�
“Low”

Untrusted, Tainted: “anyone”: Transient:
All host nodesAnyone Anyone can make Anyone can

can affect data a hard reference delete object
Fig. 2. Interpretations of the extremal policy labels

(a) (b)

Fig. 3. Authority affects integrity of dereferences. Alice is following her soft reference
to the lyon album. An adversary can affect the outcome of the dereference, because the
album has low authority. (a) The untrusted host U has a hard reference preventing lyon
from being garbage collected; Alice’s dereference succeeds. (b) Host U has removed its
hard reference, allowing lyon to be garbage collected; Alice’s dereference fails.

the reference. In Figure 1, if Alice follows the reference from her docs directory to the
scratchpad, she obtains an untrusted result; the untrusted host U influences the result
by choosing whether to delete the scratchpad object.

More subtly, the adversary can manipulate hard references to influence the garbage
collector, and thereby indirectly affect the result of a dereference. For example, in Fig-
ure 3a, Alice is following her soft reference to Bob’s lyon album. Bob has marked lyon
as only requiring low authority, allowing the untrusted, adversarial host U to create a
hard reference, and thereby preventing lyon from being garbage-collected. Therefore,
Alice’s dereference must succeed.

However, in Figure 3b, the adversary U has removed its reference. Subsequently,
lyon has been garbage-collected, and Alice’s dereference fails. The adversary has in-
directly affected the outcome of the dereference. To account for this, the integrity of
Alice’s dereference must be no higher than the authority required by lyon.

4 Types for persistent programming
To formalize the ideas presented in the previous section, we introduce the λpersist lan-
guage, an extension to the simply typed lambda calculus. Figure 4 gives part of the
formal syntax of λpersist. Its type system prevents referential vulnerabilities by integrat-
ing policies for persistence, authority, and integrity into types. Accidental persistence is
prevented because persistence is determined by policies expressing the programmer’s
intent, rather than by reachability. Referential integrity is maintained by a λpersist pro-
gram with respect to a particular adversary if following hard references whose persis-

Variables x,y ∈ Var Policy levels w,a, p,` ∈ L
Memory locations m ∈ Mem PC labels pc ∶∶= w

Labeled record types S ∶∶= {ÐÐ⇀xi ∶ τi}s Storage labels s ∶∶= (a, p)
Labeled ref types R ∶∶= {ÐÐ⇀xi ∶ τi}r Reference labels r ∶∶= (a+,a−, p)

Base types b ∶∶= bool ∣ τ1
pcÐ→ τ2 ∣ R ∣ soft R Types τ ∶∶= bw ∣ 1

Values v,u ∶∶= x ∣ true ∣ false ∣ ∗ ∣ mS ∣ soft mS ∣ λ(x ∶ τ)[pc].e (∣ �p)
Terms e ∶∶= v ∣ v1 v2 ∣ if v1 then e2 else e3 ∣ {ÐÐÐ⇀xi = vi}S ∣ v.x

∣ v1.x ∶= v2 ∣ soft e ∣ e1∥e2 ∣ exists v as x ∶ e1 else e2 ∣ let x = e1 in e2

Fig. 4. Syntax of λ
0
persist. Parenthesized productions only appear at run time.

tence and integrity are above the level of the adversary never leads to an object that has
been destroyed by the adversary or garbage-collected. Storage attacks are prevented if
the adversary is unable to change the set of high-authority objects that are reachable
through hard references.

4.1 Labels
We assume a bounded lattice (L,≼,�,⊺) of policy levels, from which integrity (w),
authority (a), and persistence policies (p) are drawn.

Objects and reference values are annotated with storage labels consisting of a cre-
ation authority policy and a persistence policy. All non-unit types τ consist of a base
type b along with an integrity policy annotation w; fields and variables thereby acquire
integrity policies, because they are part of their types. Objects do not have their own
integrity labels because all of their state is in their fields, which do have labels.

The program-counter label pc [9] is an integrity level indicating the degree to which
the program’s control flow has been tainted by untrusted data. This label restricts the
side effects of code.

4.2 Example
Suppose we want to create a hierarchical, distributed directory structure, such as in
Figure 1. Each directory maps names to either strings, representing ordinary files, or to
other directories, and contains a reference to its parent directory (elided in the figure).
To faithfully model ordinary filesystems, directories higher in the hierarchy should be
more persistent: if they are destroyed, so is everything below.

A fully general directory structure would require augmenting λpersist with recursive
and dependent types; for simplicity, these features have been omitted from λpersist be-
cause they do not appear to add interesting issues. However, we can capture the security
of a general directory structure by using λpersist records to build a fixed-depth directory
structure with a fixed set of entry names for each directory.

4.3 Modeling objects and references
The security policies of λpersist are about objects and references to them. Therefore,
λpersist extends the lambda calculus with records that represent the content of objects.
The record {

ÐÐÐ⇀xi = vi} comprises a set of fieldsÐ⇀xi with corresponding valuesÐ⇀vi . Records
are not values in the language; instead, they are accessed via references mS, where m is

the identity of the object and S = {
ÐÐ⇀xi ∶ τi}s gives its base record type. The storage label

s is a pair (a, p). The authority label a is an upper bound on the authority required to
create a new reference to the referent object.

References to objects have labeled reference types {
ÐÐ⇀xi ∶ τi}r. A reference label r

is a triple (a+,a−, p) that gives upper and lower bounds on the authority required by
the referent, and a lower bound on the persistence of the referent. The upper author-
ity label a+ restricts reference copying to prevent storage attacks. The lower authority
label a− prevents the adversary from exploiting garbage collection to damage integrity
(Section 3.5), by tainting the integrity of dereferencing soft references.

4.4 Modeling distributed systems
The goal of the λpersist language is to model a distributed system in which code is run-
ning at different host nodes. A single program written in λpersist is intended to represent
such a system. The key to modeling distributed, federated computation faithfully is that
different parts of the program can be annotated with different integrity labels, repre-
senting the trust that has been placed in that part of the code. To model a set of compu-
tations (subprograms Ð⇀ei) executing at different nodes, the individual computations are
composed in parallel (e1∥⋯∥en) into a single λpersist program.

From the viewpoint of a given principal in the system, code with a low integrity
label, relative to that principal, can be replaced by any code at all. For the purposes of
evaluating the security of the system, this code is in effect erased and replaced by the
adversary. Therefore the single-program representation faithfully models a distributed
system containing an adversary.

5 Accidental persistence and storage attacks
We present λpersist in two phases. In this section, we present λ

0
persist, a simplified subset

of λpersist that prevents accidental persistence and storage attacks.

5.1 Syntax of λ
0
persist

Figure 4 gives the syntax of λ
0
persist. The names x and y range over variable names Var;

m ranges over a space of memory addresses Mem; w, a, p, and ` range over the lattice
L of policy levels; and s and r range over the space of storage labels L2 and reference
labels L3, respectively.

Types in λ
0
persist consist of base types with an integrity label (bw), and the unit type 1.

Base types include booleans, functions, and two kinds of references to mutable records:
hard (R) and soft (soft R). The metavariable R denotes a labeled reference type.

The type τ1
pc
Ð→ τ2 is a function type with a pc annotation that is a lower bound on

the pc label of the caller. It gives an upper bound on the authority level of references the
function creates and on the authority level of references held in the closure environment.

Values include variables x, booleans true and false, the unit value ∗, record-typed
memory locations (references) mS, soft references soft mS, and functions λ(x ∶τ)[pc].e.
The pc component of a function λ(x ∶τ)[pc].e has the same meaning as that in function
types. At run time, p-persistence failures �p can also appear as values.

Most terms are standard. The unusual features are record constructors {
ÐÐÐ⇀xi = vi}

S,
soft references soft e, parallel composition e1∥e2, and soft-reference tests exists v as x ∶
e1 else e2.

5.2 Example
Returning to the directory example in Figure 1, Bob can add to the itinerary with the
code below. It starts at the root of the directory structure, traverses down to the itinerary,
and invokes an add method to add a museum.

let home = root.bob

in exists home as bob:

let docs = bob.docs

in docs.itinerary.add "Rodin Museum"

else: ...

The garbage collector may have snapped the soft reference home to Bob’s home di-
rectory, so exists is used to determine whether the reference is still valid. If so, the body
of the exists is evaluated with bob bound to a hard reference to the home directory.2

(This reference can be created because the pc label at this point has sufficient creation
authority.) The second select expression, bob.docs, dereferences the hard reference.

5.3 Operational semantics of λ
0
persist

Figure 5 gives the small-step operational semantics of λ
0
persist, omitting standard rules.

The notation e{v/x} denotes capture-avoiding substitution of value v for variable x in
expression e. A failed or garbage-collected memory location contains value �. Most of
the operational semantics rules are straightforward, but a few deserve more explanation.

Let M represent a memory: a finite partial map from typed memory locations mS to
closed record values. Let ⟨e,M⟩ be a system configuration. A small evaluation step is a
transition from ⟨e,M⟩ to another configuration ⟨e′,M′⟩, written ⟨e,M⟩→ ⟨e′,M′⟩.

Let locs(e) represent the set of locations appearing explicitly in e. A memory M is
well-formed only if every address m appears at most once in dom(M), and for any lo-
cation mS in dom(M), locs(M(mS)) ⊆ dom(M). A configuration ⟨e,M⟩ is well-formed
only if M is well-formed, locs(e) ⊆ dom(M), and e has no free variables.

Though the operational semantics refer to complete record types, only their per-
sistence labels are needed at run time. These labels are only used to determine the
level of persistence failure that occurs when dereferencing a dangling reference (rules
DANGLE-SELECT and DANGLE-ASSIGN), so run-time overhead should be small.

The record constructor {ÐÐÐ⇀xi = vi}
S (rule CREATE) creates a new memory location mS

to hold the record. The component S specifies the base type and storage label of the
record. The storage label governs at what nodes the object can be created. The function
newloc(M) deterministically generates a fresh memory location.

The field-selection expression v.x (rules SELECT and DANGLE-SELECT) evaluates
v to a memory location mS. If the location has not failed, the result of the selection is

2 To avoid a race with the garbage collector, an implementation of exists should first optimisti-
cally create the hard reference, then check its validity before exposing it to the program.

[LET]
∀p. v ≠ �p

⟨let x = v in e,M⟩ eÐ→ ⟨e{v/x},M⟩

[CREATE]
m = newloc(M)

⟨{ÐÐÐ⇀xi = vi}S,M⟩ eÐ→ ⟨mS,M[mS ↦ {ÐÐÐ⇀xi = vi}]⟩

[PARALLEL-
RESULT

] ⟨v1∥v2,M⟩ eÐ→ ⟨∗,M⟩ [SELECT]
M(mS) = {ÐÐÐ⇀xi = vi}

⟨mS.xc,M⟩ eÐ→ ⟨vc,M⟩

[ASSIGN]
M(mS) ≠ � ∀p. v ≠ �p

⟨mS.xc ∶= v,M⟩ eÐ→ ⟨∗,M[mS.xc ↦ v]⟩

[DANGLE-
SELECT

]
M(mS) = � p = persist(mS)

⟨mS.xc,M⟩ eÐ→ ⟨�p,M⟩
[DANGLE-

ASSIGN
]

M(mS) = � p = persist(mS)
⟨mS.xc ∶= v,M⟩ eÐ→ ⟨�p,M⟩

[EXISTS-
TRUE

]
M(mS) ≠ �

⟨exists soft mS as x ∶ e1 else e2,M⟩ eÐ→ ⟨e1{mS/x},M⟩

[EXISTS-
FALSE

]
M(mS) = �

⟨exists soft mS as x ∶ e1 else e2,M⟩ eÐ→ ⟨e2,M⟩
Evaluation contexts

E ∶∶= soft [⋅] ∣ let x = [⋅] in e ∣ [⋅]∥e ∣ e∥[⋅] [FAIL-
PROP

] ⟨F [�p] ,M⟩ eÐ→ ⟨�p,M⟩
F ∶∶= soft [⋅] ∣ let x = [⋅] in e

[PROG-STEP]
⟨e,M⟩ eÐ→ ⟨e′,M′⟩
⟨e,M⟩→ ⟨e′,M′⟩

[GC]
gc(G,⟨e,M⟩)

⟨e,M⟩→ ⟨e,M[G↦ �]⟩

Fig. 5. Small-step operational semantics for nonadversarial execution of λ
0
persist. Rules

that are standard have been elided.

[S1]
n > m

⊢ {x1 ∶τ1, . . . ,xn ∶τn}r ≤ {x1 ∶τ1, . . . ,xm ∶τm}r
[S2]

⊢ R1 ≤ R2

⊢ soft R1 ≤ soft R2

[S3]
⊢ b1 ≤ b2 ⊢ w2 ≼ w1

⊢ (b1)w1 ≤ (b2)w2

[S4]
⊢ τ2 ≤ τ1 ⊢ τ

′

1 ≤ τ
′

2 ⊢ pc1 ≼ pc2

⊢ τ1
pc1ÐÐ→ τ

′

1 ≤ τ2
pc2ÐÐ→ τ

′

2

[S5]
⊢ a+1 ≼ a+2 ⊢ a−2 ≼ a−1 ⊢ p2 ≼ p1

⊢ {ÐÐ⇀xi ∶ τi}(a+1 ,a
−

1 ,p1)
≤ {ÐÐ⇀xi ∶ τi}(a+2 ,a

−

2 ,p2)

Fig. 6. Subtyping rules for λ
0
persist

the value of the field x of the record at that location. Otherwise, a p-persistence failure
occurs, where p is the persistence level of mS, written p = persist(mS).

The field-assignment expression v1.x ∶= v2 evaluates v1 to a memory location mS

(rules ASSIGN and DANGLE-ASSIGN) If the location has not failed, v2 is assigned
into the field x of the record at that location; otherwise, a p-persistence failure occurs
(where p= persist(mS)). The notation M[mS.xc↦ v] denotes the memory resulting from
updating with value v the field xc of the record at location mS.

Persistence failures propagate outward dynamically (FAIL-PROP) until the whole
program fails. The production F gives the contexts from which persistence failures
propagate. The full λpersist language, defined in Section 6, can handle these failures.

The soft-reference expression soft e evaluates e to a hard reference and turns it
into a soft reference. The soft-reference test (exists v as x ∶ e1 else e2) promotes the soft
reference v (if valid) to a hard reference bound to x and evaluates e1. If the reference is
invalid, e2 is evaluated instead.

In rule GC, the notation gc(G,⟨e,M⟩) means that G is a set of locations that is
collectible. G is considered collectible if it has no GC roots (i.e., hard references in e),
and no location outside G has a hard reference into G.

5.4 Subtyping in λ
0
persist

The subtyping judgment ⊢ τ1 ≤ τ2 states that any value of type τ1 can be treated as a
value of type τ2. Subtyping in λ

0
persist is the least reflexive and transitive relation consis-

tent with the rules given in Figure 6.
Subtyping on soft references is covariant (rule S2). While hard references may be

soundly used as soft references, this is omitted for simplicity. Rule S3 gives contravari-
ant subtyping on integrity labels. Rule S4 gives standard subtyping on functions; the
additional pc component is covariant. Rule S5 gives subtyping for labeled reference
types. It ensures the bounds specified by the reference label of the subtype are at least
as precise as those of the supertype.

5.5 Static semantics of λ
0
persist

Typing rules for λ
0
persist are given in Figure 7. The notation auth+(r) and auth−(r) give

the upper (a+) and lower (a−) authority component of a reference label r, respectively.
The notation auth+(τ), defined below, gives the authority level needed to create a hard
reference to a value of type τ. The integrity of τ is written integ(τ), and τ⊓ ` denotes
the type obtained by tainting (meeting) the integrity of τ with `.

auth+(bool) = auth+(1) = auth+(soft R) = �
auth+(τ1

pcÐ→ τ2) = pc auth+({ÐÐ⇀xi ∶ τi}s) = auth+(s)

The typing context includes a type assignment Γ and the program-counter label pc.
We write x ∶τ ∈ Γ and Γ(x) = τ interchangeably. The typing assertion Γ;pc ⊢ e ∶ τ means
that the expression e has type τ under type assignment Γ with program-counter label pc.

Most of the typing rules are standard rules, extended to ensure that the pc is suffi-
ciently high to obtain any hard references that may result from evaluating subexpres-
sions (e.g., premise ⊢ auth+(τ) ≼ pc in Rule T-IF), and that the pc is suitably tainted.

Rule T-REC checks the creation of records. The pc must be high enough to create
any hard references that appear in the fields, and to write to the fields themselves.

When using a hard reference v1, the pc must have sufficient authority to possess
v1 (premise ⊢ auth+(r) ≼ pc in rules T-SEL and T-ASGN). When assigning through
v1, hard references contained in the assigned value v2 also require authority. Since the
integrity and persistence of v1 can affect whether the assignment succeeds, we taint the
pc with these labels before comparing with the authority requirement of v2.

Rule T-EXISTS checks soft-reference validity tests. It ensures that the pc has the
authority to promote the reference from soft to hard (premise ⊢ auth+(r) ≼ pc).

[T-BOOL]
b ∈ {true, false}
Γ;pc ⊢ b ∶ bool⊺

[T-UNIT] Γ;pc ⊢ ∗ ∶ 1

[T-VAR]
Γ(x) = τ

Γ;pc ⊢ x ∶ τ
[T-BOT]

p ≠ ⊺
Γ;pc ⊢ �p ∶ τ

[T-LOC]
⊢wf S ∶ rectype S = {ÐÐ⇀xi ∶ τi}(a,p)

Γ;pc ⊢mS ∶ ({ÐÐ⇀xi ∶ τi}(a,a,p))⊺
[T-SOFT]

Γ;pc ⊢ e ∶ Rw

Γ;pc ⊢ soft e ∶ (soft R)w

[T-IF]

Γ;pc ⊢ v ∶ boolw
Γ;pc⊓w ⊢ ei ∶ τ (∀i)

⊢ auth+(τ) ≼ pc⊓w

Γ;pc ⊢ if v then e1 else e2 ∶ τ⊓w
[T-PLL]

Γ;pc ⊢ ei ∶ τi
(∀i)

⊢ auth+(τi) ≼ pc (∀i)

Γ;pc ⊢ e1∥e2 ∶ 1

[T-ABS]

Γ,x ∶τ′;pc′ ⊢ e ∶ τ

⊢wf (τ
′ pc′Ð→ τ)⊺ ∶ type ⊢ pc′ ≼ pc

Γ;pc ⊢ λ(x ∶τ′)[pc′].e ∶ (τ
′ pc′Ð→ τ)⊺

[T-APP]

Γ;pc ⊢ v1 ∶ (τ
′ pc′Ð→ τ)w

Γ;pc ⊢ v2 ∶ τ′
⊢ pc′ ≼ pc⊓w

Γ;pc ⊢ v1 v2 ∶ τ⊓w

[T-REC]

⊢wf S ∶ rectype S = {ÐÐ⇀xi ∶ τi}(a,p) Γ;pc ⊢ vi ∶ τ′i (∀i)

⊢ τ
′

i ≤ τi
(∀i) ⊢ auth+(τ

′

i) ≼ pc (∀i) ⊢ integ(τi) ≼ pc (∀i) ⊢ p ≼ pc

Γ;pc ⊢ {ÐÐÐ⇀xi = vi}S ∶ ({ÐÐ⇀xi ∶ τi}(a,a,p))⊺

[T-SEL]

Γ;pc ⊢ v ∶ ({ÐÐ⇀xi ∶ τi}r)w

⊢ auth+(r) ≼ pc
w′ = w⊓persist(r)
Γ;pc ⊢ v.xc ∶ τc⊓w′

[T-ASGN]

Γ;pc ⊢ v1 ∶ ({ÐÐ⇀xi ∶ τi}r)w

⊢ auth+(r) ≼ pc
Γ;pc ⊢ v2 ∶ τ
⊢ τ⊓pc⊓w ≤ τc

⊢ auth+(τ) ≼ pc⊓w

Γ;pc ⊢ v1.xc ∶= v2 ∶ 1

[T-EXISTS]

Γ;pc ⊢ v ∶ (soft {ÐÐ⇀xi ∶ τi}r)w ⊢ auth+(r) ≼ pc⊓w
w′ = auth−(r)⊓persist(r)⊓w Γ,x ∶({ÐÐ⇀xi ∶ τi}r)w;pc⊓w′ ⊢ e1 ∶ τ

Γ;pc⊓w′ ⊢ e2 ∶ τ ⊢ auth+(τ) ≼ pc⊓w′

Γ;pc ⊢ exists v as x ∶ e1 else e2 ∶ τ⊓w′

[T-LET]

Γ;pc ⊢ e1 ∶ τ′ ⊢ auth+(τ
′) ≼ pc

w = integ(τ
′) pc′ = pc⊓w

Γ,x ∶τ′;pc′ ⊢ e2 ∶ τ ⊢ auth+(τ) ≼ pc′

Γ;pc ⊢ let x = e1 in e2 ∶ τ⊓w
[T-SUB]

Γ;pc ⊢ e ∶ τ′ ⊢ τ
′ ≤ τ

Γ;pc ⊢ e ∶ τ

Fig. 7. Typing rules for λ
0
persist

The rules for determining the well-formedness of types are given in Figure 8. In
rule WT6, a reference type ({

ÐÐ⇀xi ∶ τi}(a+,a−,p))w is well-formed only if the upper author-
ity label a+ is an upper bound on the authority levels of the field types τi. This ensures
that the upper authority label is an accurate summary of the authority required by the
fields. We also require a+ be bounded from above by the integrity w of the reference,
since low-integrity data should not influence the creation of high-authority references.

[WT1] ⊢wf boolw ∶ type [WT2]

⊢ pc ≼ w ⊢wf τ1 ∶ type ⊢wf τ2 ∶ type
⊢ auth+(τ1)⊔auth+(τ2) ≼ pc

⊢wf (τ1
pcÐ→ τ2)w ∶ type

[WT3] ⊢wf 1 ∶ type [WT4]
⊢wf ({ÐÐ⇀xi ∶ τi}(a,a,p))⊺ ∶ type ⊢ integ(τi) ≼ p (∀i)

⊢wf {ÐÐ⇀xi ∶ τi}(a,p) ∶ rectype

[WT5]
⊢wf R⊺ ∶ type

⊢wf (soft R)w ∶ type
[WT6]

⊢wf τi ∶ type (∀i) ⊢ auth+(τi) ≼ a+ (∀i)

⊢ a+ ≼ w⊓ p ⊢ a− ≼ a+

⊢wf ({ÐÐ⇀xi ∶ τi}(a+,a−,p))w ∶ type

Fig. 8. Well-formedness of types

To ensure hosts are able to create hard references to the objects they store, we also
require auth+(r) to be bounded from above by the persistence level p of the record.

6 Ensuring referential integrity
In a distributed system, references can span trust domains, so to be secure and reliable,
program code must in general be ready to encounter a dangling reference, one perhaps
created by the adversary. Therefore, we extend λ

0
persist with persistence-failure handlers

to obtain the full λpersist language (see [16] for its full syntax). The type system of λpersist
forces the programmer to be aware of and to handle all potential failures.

We might consider an approach in which failures must be handled immediately upon
encountering a broken reference. However, because low-persistence references may be
used frequently, this would likely result in much duplication of failure-handling code.

Instead, λpersist factors out failure-handling code from ordinary code by treating fail-
ures as a kind of exception. The value of (try e1 catch p∶ e2) is the value of evaluating
e1. If a dangling reference at persistence level p or higher is encountered, the failure
handler e2 is evaluated instead. A try expression creates a context (e1) in which the pro-
grammer can write simpler code under the assumption that certain persistence failures
are impossible, yet without sacrificing the property that all failures are handled.

6.1 Persistence handler levels
To track the failures that the current context can handle, a set of persistence levels H
is used.3 It provides lower bounds on the persistence levels of hard references that may

be directly dereferenced. Functions λ(x ∶τ)[pc;H].e and function types τ1
pc,H
ÐÐ→ τ2 are

extended with anH component, which is an upper bound on theH levels of the caller.

6.2 Example
Returning to the directory example in Figure 1, Alice can add a place to the list of sight-
seeing ideas with the code below. This code starts at Alice’s docs directory, traverses
the reference to the scratchpad, and invokes an add method to add a museum.

let pad = docs.scratchpad

in try pad.add "Rodin Museum" catch �: ...

3 Formally,H is drawn from the upper powerdomain [22] of persistence levels.

[TRY-
VAL

]
∀p′. v ≠ �p′

⟨try v catch p∶ e,M⟩ eÐ→ ⟨v,M⟩
[TRY-

CATCH
]

p ≼ p′

⟨try �p′ catch p∶ e,M⟩ eÐ→ ⟨e,M⟩

[TRY-
ESC

]
p /≼ p′

⟨try �p′ catch p∶ e,M⟩ eÐ→ ⟨�p′ ,M⟩
E ∶∶= . . . ∣ try [⋅] catch p∶ e

[T-SOFT-
SELECT

]

Γ;pc;H ⊢ v ∶ (soft {ÐÐ⇀xi ∶ τi}r)w,⊺ ⊢ auth+(τc) ≼ pc
p = auth−(r)⊓persist(r)⊓w ⊢H ≼ p

Γ;pc;H ⊢ v.xc ∶ τc⊓ p, p

[T-SOFT-
ASSIGN

]

Γ;pc;H ⊢ v1 ∶ (soft {ÐÐ⇀xi ∶ τi}r)w,⊺ p = auth−(r)⊓persist(r)⊓w
Γ;pc;H ⊢ v2 ∶ τ,⊺ ⊢ τ⊓pc⊓ p ≤ τc ⊢ auth+(τ) ≼ pc⊓ p ⊢H ≼ p

Γ;pc;H ⊢ v1.xc ∶= v2 ∶ 1, p

[T-TRY]

Γ;pc;H, p ⊢ e1 ∶ τ,X1 w = ⊓
p′∈X1

(p⊔ p′)

Γ;pc⊓w⊓ integ(τ);H ⊢ e2 ∶ τ,X2 ⊢ auth+(τ) ≼ pc

Γ;pc;H ⊢ try e1 catch p∶ e2 ∶ τ⊓w,(X1/p)⊓X2

Fig. 9. Additional small-step evaluation and typing rules for λpersist

The expression pad.add follows a hard reference to the scratchpad. Despite the hard
reference, a try is needed because Alice does not trust host U to persist the scratchpad.

6.3 Static and dynamic semantics of λpersist

The small-step operational semantics of λpersist extends that of λ
0
persist with the rules at

the top of Figure 9. Failures propagate outward dynamically (TRY-ESC) until either they
are handled by a failure handler (TRY-CATCH), or the whole program fails. See [16] for
the full operational semantics for λpersist.

The subtyping rules are the same as for λ
0
persist, except that function subtyping is

also contravariant on theH component. Full subtyping rules are also in [16].
The typing rules for λpersist extend those for λ

0
persist. They augment the typing con-

text with a handler environmentH, indicating the set of persistence failures the evalua-
tion context can handle. Typing judgments additionally produce an effect X , which is a
set indicating the persistence failures that can occur during evaluation.

The typing rules for λ
0
persist are converted straightforwardly to thread H and X

through typing judgments. Rules T-SEL and T-ASGN gain premises to ensure the con-
text has a suitable handler in case dereferences fail. See [16] for the converted rules.

The bottom of Figure 9 gives three new typing rules. T-SOFT-SELECT and T-SOFT-
ASSIGN check direct uses of soft references. They taint the integrity of the dereference
with auth−(r) because the result of the dereference is affected by those able to pin the
referent in memory by creating a hard reference (Section 3.5). Rule T-TRY checks try
expressions. To reflect the installation of a p-persistence handler, p is added to the han-
dler environment H when checking e1. The value w in the typing rule is a conservative
summary of the persistence errors that can occur while evaluating e1 and are not han-
dled by the p-persistence handler. Because evaluation of e2 depends on the result of e1,

[α-CREATE]

m = newloc(M) ∅;⊺;⊺ ⊢ {
ÐÐÐÐ⇀
xi = [vi]}S ∶ R⊺,⊺

⊢α

[wf] M[mS ↦ {
ÐÐÐÐ⇀
xi = [vi]}] α /≼ persist(S)

⟨e,M⟩↝α ⟨e,M[mS ↦ {
ÐÐÐÐ⇀
xi = [vi]}]⟩

[α-ASSIGN]

mS ∈ dom(M) M(mS) ≠ �
S = {ÐÐ⇀xi ∶ τi}s ∅;⊺;⊺ ⊢ [v] ∶ τc,⊺

⊢α

[wf] M[mS.xc ↦ [v]]

⟨e,M⟩↝α ⟨e,M[mS.xc ↦ [v]]⟩
[α-FORGET]

mS ∈ dom(M)
α /≼ persist(S)

⟨e,M⟩↝α ⟨e,M[mS ↦ �]⟩

Fig. 10. Effects caused by the α-adversary

the pc label for evaluating e2 is tainted by w. In this rule, the notation X /p denotes the
subset of persistence errors X not handled by p.

7 The power of the adversary
Possible actions of the adversary are modeled by extending the operational semantics of
Figure 5 with more transitions. To support reasoning about what an adversary may have
affected in a partially evaluated program, λpersist is also augmented to include bracketed
expressions, resulting in the language [λpersist]. The term [e] represents an expression
e that may have been influenced by the adversary, and [v] is an influenced value. The
operational semantics is extended by adding rules that propagate these brackets in the
obvious manner. (Doubly bracketed values are considered expressions, not values.)

The rule for typing bracketed expressions is as follows:

[T-BRACKET]
Γ;pc⊓ `;H ⊢ e ∶ τ,X α /≼ ` ⊢ auth+(τ) ≼ pc⊓ `

Γ;pc;H ⊢ [e] ∶ τ⊓ `,X

The adversary is powerful, as shown by the transitions defined in Figure 10. Ad-
versaries may create new records (rule α-CREATE), modify existing records (rule α-
ASSIGN), or remove records from memory altogether (rule α-FORGET), but their ability
is bounded by an integrity label α ∈ L. Such an α-adversary has all creation authority
except α and higher, can modify any record field except those with α (or higher) in-
tegrity, and can delete any record except those with α (or higher) persistence. A small
evaluation step taken in the presence of an α-adversary is written ⟨e,M⟩→α ⟨e′,M′⟩.

It is important to know that any evaluation of a program in the original language can
be simulated in the augmented language, which amounts to showing that the rules cover
all the ways that brackets can appear. This is proved straightforwardly by induction on
the evaluation rules.

The adversary’s transitions embody a simplifying assumption that the adversary can
only create well-typed values. While it is reasonable to allow the adversary to create ill-
typed values, an implementation with run-time type checking can catch ill-typed values
when they cross between hosts and replace them with well-typed default values.

8 Results
The goal of λpersist is to prevent accidental persistence and to ensure that the adversary
cannot damage referential integrity or cause storage attacks. Accidental persistence is
prevented by the use of persistence policies. We now show how to formalize the other
security properties and sketch the proof that they are enforced.

8.1 Soundness and well-formedness
We have proved [16] the [λpersist] type system sound with the usual method, via preser-
vation and progress. A well-formed λpersist memory M, written ⊢wf M, maps typed loca-
tions to record values with the same type. In a λpersist configuration that is well-formed
with respect to an α-adversary (written ⊢α

wf ⟨e,M⟩), no noncollectible high-persistence
location is deleted. λpersist configurations are well-formed in a nonadversarial setting
(⊢wf ⟨e,M⟩) if they are well-formed with respect to the �-adversary.

Corresponding well-formedness conditions are defined similarly for [λpersist] and
is written with brackets around the wf subscript. Well-formed [λpersist] memories addi-
tionally require that values appearing in low-integrity record fields must be bracketed.

8.2 Security relation
The key to proving both referential integrity and immunity to storage attacks is to show
that the adversary cannot meaningfully influence the high-integrity parts of the program
and memory. To do this, we define a security relation and show that each configuration
⟨e1,M1⟩ reached via the language augmented by adversarial transitions must be related
to some configuration ⟨e2,M2⟩ reachable by purely nonadversarial execution. This se-
curity property is possibilistic, which is problematic for confidentiality properties [21]
but is acceptable for integrity.

Because the two executions being compared operate on different heaps, with the ad-
versary behaving differently in the two executions, the addresses chosen during record
allocation may differ. However, the structure of the high-integrity part of the heap
should still correspond. A high-integrity homomorphism φ is used to relate correspond-
ing locations in the two heaps that are high-integrity or high-persistence. High-integrity
homomorphisms are injective, preserve location types, and are isomorphisms on both
high-integrity and high-persistence locations. This is defined formally in [16].

An expression e1 is considered to be related to e2 via a high-integrity homomor-
phism φ, written e1 ≈

φ

α e2, if e1 is equal to e2 (modulo bracketed expressions) when the
memory locations in e1 are transformed via φ.

We also define a security relation on memories: M1 and M2 are related via φ, written
M1 ≈

φ

α M2, if two conditions hold for each location mS ∈ dom(φ). If mS is not deleted,
then φ(mS) maps to a related record. Otherwise, if mS is deleted, high-authority, and
high-persistence, then so is φ(mS). The formal definition is given in [16]. These two
security relations induce a security relation on configurations:

⟨e1,M1⟩ ≈
φ

α ⟨e2,M2⟩
def.
⇐⇒ e1 ≈

φ

α e2∧M1 ≈
φ

α M2.

A [λpersist] program has limited adversary influence if related initial configurations pro-
duce related final configurations. We now see that the language [λpersist] enforces secu-
rity, because all well-formed programs do have limited adversary influence.

8.3 Referential integrity
Theorem 1 formalizes the referential integrity result, showing that the adversary has
limited influence on program execution: execution in the presence of an adversary is
φ-related to a nonadversarial execution.

For the remainder of this paper, assume ⟨e1,M1⟩ is a well-formed configuration and
⟨e2,M2⟩ is a well-formed, nonadversarial, φ-related configuration, such that e1 and e2
have type τ and M2 is well-formed:

⊢
α

[wf] ⟨e1,M1⟩ ∧ ⊢[wf] ⟨e2,M2⟩ ∧ ⟨e1,M1⟩ ≈
φ

α ⟨e2,M2⟩

∧ ∅;pc;H ⊢ e1 ∶ τ,X ∧ ∅;pc;H ⊢ e2 ∶ τ,X ∧ ⊢
α

[wf] M2

Theorem 1 (Referential integrity) Suppose ⟨e1,M1⟩ takes some number of steps in
the presence of an adversary to another configuration ⟨e′1,M

′

1⟩. Then either ⟨e2,M2⟩

diverges, or it can take some number of steps in the absence of an adversary to another
configuration ⟨e′2,M

′

2⟩ and there exists a high-integrity homomorphism φ
′ from M′

1 to
M′

2 that extends φ, such that ⟨e′1,M
′

1⟩ is related to ⟨e′2,M
′

2⟩ via φ
′:

⟨e1,M1⟩→
∗

α ⟨e′1,M
′

1⟩∧¬⟨e2,M2⟩ ⇑

⇒ ∃e′2,M
′

2,φ
′. ⟨e2,M2⟩→

∗ ⟨e′2,M
′

2⟩∧ ⟨e′1,M
′

1⟩ ≈
φ
′

α ⟨e′2,M
′

2⟩∧φ = φ
′∣
dom(φ)

Proof: Induction on the derivation of ⟨e1,M1⟩→α ⟨e′1,M
′

1⟩.

8.4 Storage attacks
To formalize immunity to storage attacks, we first show that the adversary cannot cause
more high-persistence locations to be allocated. Theorem 1 captures this via the security
relation, since all high-persistence locations are mapped by the homomorphism.

We now show that the adversary cannot cause more high-authority locations to be-
come noncollectible; that is, reachable through hard references. Lemma 1 says that this
is also implied by Theorem 1. (We write nc(mS,⟨e,M⟩) to mean mS is noncollectible in
⟨e,M⟩. The formal, inductive definition is in [16].)

Lemma 1. If mS is a high-authority, noncollectible location in ⟨e1,M1⟩, then φ(mS) is
also noncollectible in ⟨e2,M2⟩.

⊢ α ≼ auth+(S)∧nc(mS,⟨e1,M1⟩)⇒ nc(φ(mS
),⟨e2,M2⟩)

Proof: By induction on the derivation of nc(mS,⟨e1,M1⟩).

9 Related work
This paper identifies and addresses a new problem, referential security. As a result, little
prior work is closely related.

Some prior work has tried to improve referential integrity through system mecha-
nisms, for example improving the referential integrity of web hyperlinks [8, 11]. Sys-
tems mechanisms for improving referential integrity (and other aspects of trustworthi-
ness) are orthogonal to the language model presented here, but could be used to justify
assigning persistence, integrity, and authority levels to nodes.

Liblit and Aiken [12] develop a type system for distributed data structures. Its ex-
plicit two-level hierarchy distinguishes between local pointers that are meaningful only
to a single processor, and global pointers that are valid everywhere. The type system
ensures that local pointers do not leak into a global context. This work was extended
in [13] to add types for dealing with private vs. shared data. However, this line of work
does not consider security properties that require defense against an adversary.

Riely and Hennessey study type safety in a distributed system of partially trusted
mobile agents [20] but do not consider referential security.

This paper builds on prior work on language-based information-flow security, much
of which is summarized by [21]. The Fabric system [15] is programmed in a high-level
language that includes integrity annotations and abstracts away the locations of objects,
as λpersist does. Its type system does not enforce referential security, however, so adding
the features described here is an obvious next step.

10 Conclusions
Complex distributed information systems are being integrated across different organi-
zations with only partial trust, often in the context of cloud computing. But the security
properties that are desirable in distributed computing are poorly understood, and the
options for enforcing security are murkier still. In fact, the desirable referential security
properties are actually in tension with each other. The result is that programmers have
little guidance in designing distributed systems to be secure and reliable.

This paper makes several contributions that aid in resolving this situation. The paper
newly identifies and formalizes some important referential security properties. It intro-
duces a high-level language for modeling referential security issues in a distributed
system. The language introduces a way to express referential security requirements
through label annotations for persistence and creation authority, which can be viewed
as different aspects of integrity. The paper demonstrates how to enforce referential secu-
rity, through static analysis expressed as a type system in the language. The type system
is validated by formal proofs that λpersist programs enforce the new security properties.

While this paper is a useful first step, clearly there is more to be done. The type sys-
tem could be enriched with more features such as parametric polymorphism, recursive
and dependent types. With such extensions, an implementation would then help evalu-
ate how well these types guide programmers designing distributed computing systems.

Acknowledgments
This research was supported in part by ONR Grants N00014-09-1-0652 and N00014-
13-1-0089; by MURI grant FA9550-12-1-0400, administered by the U.S. Air Force; by
NSF Grants 0541217, 0627649, and 0964409; and by a grant from Microsoft Corpo-
ration. The views and conclusions here are those of the authors and do not necessarily
reflect those of ONR, the Navy, the Air Force, NSF, or Microsoft. The U.S. Government
is authorized to reproduce and distribute reprints for Government purposes, notwith-
standing any copyright annotation thereon.

We also thank Aslan Askarov, Danfeng Zhang, Owen Arden, Barbara Liskov, Mike
George, and David Schulz for their suggestions about this work or its presentation.

References
1. Malcom Atkinson, François Bancilhon, David DeWitt, Klaus Dittrich, David Maier, and

Stanley Zdonik. The object-oriented database system manifesto. In Proc. International
Conference on Deductive Object Oriented Databases, Kyoto, Japan, December 1989.

2. K. J. Biba. Integrity considerations for secure computer systems. Technical Report ESD-
TR-76-372, USAF Electronic Systems Division, Bedford, MA, April 1977.

3. Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Network objects. In
SOSP ’93, pages 217–230, December 1993.

4. Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object structure in the Emer-
ald system. In OOPSLA ’86, pages 78–86, November 1986.

5. Breeze, 2013. www.breezejs.com.
6. Heiko Böck. Java Persistence API. Springer, 2011.
7. E. F. Codd. Extending the database relational model to capture more meaning. ACM Trans-

actions on Database Systems (TODS), 4(4):397–434, December 1979.
8. Hugh C. Davis. Referential integrity of links in open hypermedia systems. In Proc. 9th ACM

Conference on Hypertext and Hypermedia, pages 207–216, 1998.
9. Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley, Reading, Mas-

sachusetts, 1982.
10. Hibernate. www.hibernate.org.
11. Frank Kappe. A scalable architecture for maintaining referential integrity in distributed

information systems. Journal of Universal Computer Science, 1(2), 1995.
12. Ben Liblit and Alexander Aiken. Type systems for distributed data structures. In POPL,

pages 199–213, January 2000.
13. Ben Liblit, Alexander Aiken, and Katherine A. Yelick. Type systems for distributed data

sharing. In Proc. 10th International Static Analysis Symposium, volume 2694 of LNCS, San
Diego, California, June 2003. Springer-Verlag.

14. Barbara H. Liskov. The Argus language and system. In Distributed Systems: Methods and
Tools for Specification, volume 150 of Lecture Notes in Computer Science, pages 343–430.
Springer-Verlag Berlin, 1985.

15. Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and Andrew C. Myers. Fabric:
A platform for secure distributed computation and storage. In SOSP, pages 321–334, 2009.

16. Jed Liu and Andrew C. Myers. A language for securely referencing persistent information
in a federated system. Technical Report 1813-35150, Computing and Information Science
Department, Cornell University, January 2014.

17. D. Maier and J. Stein. Development and implementation of an object-oriented DBMS. In
B. Shriver and P. Wegner, editors, Research Directions in Object-Oriented Programming.
MIT Press, 1987.

18. Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT Press,
Cambridge, MA, 1990.

19. OMG. The Common Object Request Broker: Architecture and Specification, December 1991.
OMG TC Document Number 91.12.1, Revision 1.1.

20. James Riely and Matthew Hennessy. Trust and partial typing in open systems of mobile
agents. In POPL ’99, pages 93–104, 1999.

21. Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, January 2003.

22. Michael B. Smyth. Power domains. Journal of Computer and System Sciences, 16(1):23–36,
1978.

23. Lantian Zheng, Stephen Chong, Andrew C. Myers, and Steve Zdancewic. Using replication
and partitioning to build secure distributed systems. In Proc. IEEE Symp. on Security and
Privacy, pages 236–250, May 2003.

http://dl.acm.org/citation.cfm?id=168637
http://dl.acm.org/citation.cfm?id=168637
http://www.breezejs.com/
http://www.amazon.com/Cryptography-Security-Dorothy-Elizabeth-Robling/dp/0201101505
http://www.amazon.com/Cryptography-Security-Dorothy-Elizabeth-Robling/dp/0201101505
http://www.hibernate.org/
http://www.cs.cornell.edu/andru/papers/fabric-sosp09.html
http://www.cs.cornell.edu/andru/papers/fabric-sosp09.html
http://hdl.handle.net/1813/35150
http://hdl.handle.net/1813/35150
http://hdl.handle.net/1813/35150
http://www.cs.cornell.edu/andru/papers/jsac/sm-jsac03.pdf
http://www.cs.cornell.edu/andru/papers/jsac/sm-jsac03.pdf
http://dx.doi.org/10.1016/0022-0000(78)90048-X
http://dx.doi.org/10.1016/0022-0000(78)90048-X
http://www.cs.cornell.edu/andru/papers/sp03.pdf
http://www.cs.cornell.edu/andru/papers/sp03.pdf
http://www.cs.cornell.edu/andru/papers/sp03.pdf

	Defining and Enforcing Referential Security
	Jed Liu Andrew C. Myers

