Defining and Enforcing

Referential Security

Jed Liu Andrew C. Myers

A Cornell University

(]
FABRIC 7/ Department of Computer Science

ASEEEE

34 Conference on Principles of Security and Trust
7 April 2014

Referential security

« Distributed systems span multiple trust domains

« Natural to have cross-domain references

— e.g, hyperlinks (web), foreign keys (DBs),
CORBA, RMI, JPA+JTA, Fabric

Jed Liu - Defining and Enforcing Referential Security

Referential security

Distributed systems span multiple trust domains

Natural to have cross-domain references

— e.g, hyperlinks (web), foreign keys (DBs),
CORBA, RMI, JPA+JTA, Fabric

Problem: references introduce dependencies

— Can create security & reliability vulnerabilities

« New class of referential security vulnerabilities

First step towards programming model for
writing code without these vulnerabilities

Jed Liu - Defining and Enforcing Referential Security

Referential security

« Distributed systems span multiple trust domains

« Natural to have cross-domain references
— e.g, hyperlinks (web), JPA+JTA (distributed DBs)
« Problem: references introduce dependencies

— Can create security & reliability vulnerabilities
Contributions
* Formalized three referential security goals

* Static analysis (type system) to enforce them
* Soundness proof

Jed Liu - Defining and Enforcing Referential Security

Directory example

(alice R
=
docs photos
= =
. J

Jed Liu - Defining and Enforcing Referential Secur

A

19Y

(

\.

docs

—

bob

= 3
photos

—

|

—

J

Referential integrity

(alice YA (bob \B
= S =
docs photos docs
= = =
\\
\ ?

Referential security goals

1. Ensure referential integrity

Jed Liu - Defining and Enforcing Referential Security

Referential integrity

- A ‘e n

——— ——

a n
* Known to be important (e.g., Java, databases)

* Not universal (e.g., web “404” errors)

-

A double-edged sword

* Enforcing referential integrity
creates other security vulnerabilities r—'u—-

T—

Jed Liu - Defining and Enforcing Referential Security

Accidental persistence

8 alice VA
SR
docs photos
= =
/ 1GB 168
summary T '\
= cp —7 1CB
_ J

Referential security goals

1. Ensure referential integrity
2. Prevent accidental persistence

Jed Liu - Defining and Enforcing Referential Security

Storage attacks

8 alice R
docs photos

e

—ics <
1GB

/

1GB 1GB
_ J

Referential security goals

1. Ensure referential integrity
2. Prevent accidental persistence
3. Prevent storage attacks

Jed Liu - Defining and Enforcing Referential Security

A framework for referential security

o Static analysis for enforcing referential security:

 Presented as type system of A

— with
A persisc €Xtends A with:

— objects (mutable records)

language

persist

— references (immutable references to records)

1. Ensure referential integrity
2. Prevent accidental persistence
3. Prevent storage attacks

Jed Liu - Defining and Enforcing Referential Security

Preventing accidental persistence

« Persist by policy, not by reachability

° Ea 1. Ensure referential integrity
v" Prevent accidental persistence
PE 3. Prevent storage attacks

persistent

policy
levels

transient

Jed Liu - Defining and Enforcing Referential Security

Preventing accidental persistence

« Persist by policy, not by reachability

« Each object has a
persistence policy p

Node-set interpretation:
Who can delete object?

T=0

: policy
{alice} levels {bob}

1 = {alice,bob} 1. Ensure referential integrity
v Prevent accidental persistence
3. Prevent storage attacks

Jed Liu - Defining and Enforcing Referential Security

Ensuring referential integrity

« Type system ensures all persistence
failures are handled

try e, catch p: e, Who can delete object?
T=U

— Factors out failure-handling code

policy bob}

alice
{ } levels

1 = {alice,bob}

v" Ensure referential integrity
v" Prevent accidental persistence
3. Prevent storage attacks

Jed Liu - Defining and Enforcing Referential Security

Ensuring referential integrity

« Type system ensures all persistence
failures are handled

try e, catch p: e, Who can delete object?
— Factors out failure-handling code N
« Typing judgement: aice} (20 toob)
ipe,H e 7, X L = {alice,bob}

— H = failures handled by context
- X = possible failures produced by e

v" Ensure referential integrity

— Invariant: X C j{ v" Prevent accidental persistence
3. Prevent storage attacks

Jed Liu - Defining and Enforcing Referential Security

Directory example

()

alice

—

R

docs photos

A

\.

A

T~

p= {alicei

* Programs must be ready to handle failure:

(

.

docs

bob

—

S

photos

—

l

—

try Lyon.show () catch bob:

p= {bob?

Who can delete object?

T=0C

policy bob}

alice
{ } levels

1 = {alice,bob}

v" Ensure referential integrity
v" Prevent accidental persistence
3. Prevent storage attacks

Jed Liu - Defining and Enforcing Referential Security

Directory example

.- A . .

| —

=
SR

o » -
- - - s J S —
\ |

Who is the adversary? -

. -_ v X 3
Alice? Bob? Someone else? bt
v L ¢ Ak I

Jed Liu - Defining and Enforcing Referential Security

Modelling the adversary

Assume adversary controls some nodes in system

Adversary modelled as a point o on lattice

— Cannot affect objects having policies at or above a

T=0
/ \ Node-set interpretation:

{alice}
\

\{

{alice, chuck}

\

alice, bob}

/(ch uck}\\

1 = {alice, bob, chuck}

Jed Liu - Defining and Enforcing Referential Security

{bob} o = set of nodes not controlled
by adversary

N Adversary cannot affect

{bob, chuck} v" Ensure referential integrity

/ v" Prevent accidental persistence
3. Prevent storage attacks

Preventing storage attacks

 Each object has a creation authority policy a
— Authority policy for short
— Restricts ability to create new refs

— Taken from same lattice as
persistence policies

no one can create ref

policy
levels
v" Ensure referential integrity
v" Prevent accidental persistence
anyone can create ref 3. Prevent storage attacks

Jed Liu - Defining and Enforcing Referential Security

Preventing storage attacks

 Each object has a creation authority policy a
— Authority policy for short
— Restricts ability to create new refs

— Taken from same lattice as
persistence policies

Node-set interpretation:
Who can create reference?

T=0

: olic
{alice} [I)evelz {bob} v Ensure referential integrity
v" Prevent accidental persistence

3. Prevent storage attacks
1 = {alice,bob} 5

Jed Liu - Defining and Enforcing Referential Security

Preventing storage attacks

 Each object has a creation authority policy a

— Authority pOlICy for short Host-set interpretation:
Who can create reference?
— Restricts ability to create new refs T=0

— Taken from same lattice as

. .. {alice} policy {bob}
persistence poI|C|es

levels

« What if you don’t have authority? 1 = falice,bob}

— (Hard) References have referential integrity,

require authority
v Ensure referential integrity
— Soft references do not v Prevent accidental persistence

v Prevent storage attacks

Jed Liu - Defining and Enforcing Referential Security

Example

(alice YA (bob 1B

ﬁ = {alicem \F = {bOb}\l Who can create reference?

docs photos docs photos T=0Q

— —

a={alice} a=falice] |a={bob} a={bob}l (. policy . o,

N levels
itinerary | Lyon
g prmm—— e EE > 1 = {alice,bob}
_a = {alice,bob}) L a = {bob}
p = {alice} p = {bob}
hard ref
_softref

Jed Liu - Defining and Enforcing Referential Security

Integrity

 Adversary controls some nodes

— Can modify some objects =» affect program state

— Can affect decision to create references

if Lthenx.f=0

« To enforce authority, type system tracks:
— Integrity of values

— Integrity of control flow
I"peccHE-e:T, X

« pc bounds authority of references created by e

Jed Liu - Defining and Enforcing Referential Security

Policies on reference types

 Reference types have policies too

— Persistence policy p
« Lower bound on persistence of referent

« Ensures persistence failures are handled when using ref
— Authority policy a™
« Upper bound on authority required by referent

. Prevents storage attacks: need a™ authority to copy ref

. Subtyping contravariant on p, covarianton a™

Jed Liu - Defining and Enforcing Referential Security

A

persist

pe,H
Base types b= bool | 7] —— T2 | R |soft R

Types Tu=by |1
Values wv,uxu= x|true|false|* | m® |soft m® | Nz :7)[pe;H].e (| L)
Terms eu= v | vy vg|if vy thenegelse es | {x; = fu?;}s | v.x | V.2 = V9
| soft e | eqlies | exists v asx: eq else ey | let 2 = ey in ey
| try eq catch p: ey

« soft e — creates soft ref out of hard ref

e existsvasx:e,elsee,

— checks whether soft ref still valid
(if yes, promotes to hard ref)

e try e, catch p: e, — persistence-failure handler

Jed Liu - Defining and Enforcing Referential Security

A

persist

pe,H
Base types b= bool | 7] —— T2 | R |soft R

Types 7u=b,|1
Values wv,uxu= x|true|false|* | m® |soft m® | Nz :7)[pe;H].e (| L)
Terms eu= v | vy vg|if vy thenegelse es | {x; = t.:?;}s | v.x | V.2 = V9
| soft e | eqlies | exists v asx: eq else ey | let 2 = ey in ey
| try eq catch p: ey

« Operational semantics

— Machine configuration: <e, M>

/N

partially evaluated program program memory
* maps typed locations m® to records
or to L if deleted

— Small step: <e,, M;> — <e,, M,>

« Includes model of garbage collector

Jed Liu - Defining and Enforcing Referential Security

Power of the adversary

« Between program steps, adversary can arbitrarily:

— Create new objects

« Objects must have low integrity & low persistence
— Assign into low-integrity fields

— Delete low-persistence objects

« Matches assumption: adversary has total control
over its nodes

Jed Liu - Defining and Enforcing Referential Security

Proving referential security

« ldea: execution with adversary should be
“equivalent” to execution without adversary

« But memory locations may not match up

— Relate traces using homomorphism ¢ on typed locations

with adversary (I) without adversary
T — Properties of ¢
s > * Partial
> * Injecti
& ——— | e
. S * Type-preserving
. > * Isomorphic when restricted to:
~~L_ — — high-integrity locations

— high-integrity locations — high-persistence locations

— high-persistence locations

Jed Liu - Defining and Enforcing Referential Security

Security relation

 For expressions: e zﬁ e,

— Expressions are equivalent when locations are
transformed by ¢

Jed Liu - Defining and Enforcing Referential Security

Security relation

 For expressions: e zﬁ e,

— Expressions are equivalent when locations are
transformed by ¢

« For memories: M, zg M,

with adversary without adversary
m, . o(m,) d)(.) where m, is mapped by ¢
m, ' o(m,) H. where m, is high-authority

and high-persistence

Jed Liu - Defining and Enforcing Referential Security

Referential security

« Theorem:

Security relation is preserved by computation
<e, M;> —— <e’, M'}>

___Withadversary D I — -

&]]
<e,, M,> —— <e’,, M',>

(assuming e; well-typed and certain well-formedness conditions)

« Lemma: Adversary cannot cause more high-
authority locations to become non-collectible

Jed Liu - Defining and Enforcing Referential Security

Related work

« System mechanisms (orthogonal to lang. model)
— e.g.,, improving referential integrity of hyperlinks

Liblit & Aiken
— Type system for distributed data structs (no security)

Riely & Hennessey
— Type safety in distributed system w/ partial trust

Chugh et al.

— Dynamically loading untrusted JavaScript
Information flow: non-interference

Jed Liu - Defining and Enforcing Referential Security

Defining and Enforcing

Referential Security

Jed Liu Andrew C. Myers

o A Cornell University
_fi%ﬂ% 7 Department of Computer Science
perS|St
Referential security goals <e, M;> — <e’, M’;>
1. Ensure referential integrity
2. Prevent accidental persistence R R

3. Prevent storage attacks

¢,0t “a

* ’ ’
<e, M,> — <e’,, M',>

