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Referential security

« Distributed systems span multiple trust domains

« Natural to have cross-domain references

— e.g, hyperlinks (web), foreign keys (DBs),
CORBA, RMI, JPA+JTA, Fabric
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Referential security

Distributed systems span multiple trust domains

Natural to have cross-domain references

— e.g, hyperlinks (web), foreign keys (DBs),
CORBA, RMI, JPA+JTA, Fabric

Problem: references introduce dependencies

— Can create security & reliability vulnerabilities

« New class of referential security vulnerabilities

First step towards programming model for
writing code without these vulnerabilities

Jed Liu - Defining and Enforcing Referential Security



Referential security

« Distributed systems span multiple trust domains

« Natural to have cross-domain references
— e.g, hyperlinks (web), JPA+JTA (distributed DBs)
« Problem: references introduce dependencies

— Can create security & reliability vulnerabilities
Contributions
* Formalized three referential security goals

* Static analysis (type system) to enforce them
* Soundness proof
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Directory example

( alice R
=
docs photos
= =
. J

Jed Liu - Defining and Enforcing Referential Secur

A

19Y

(

\.

docs

—

bob

= 3
photos

—

|

—

J




Referential integrity
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Referential security goals

1. Ensure referential integrity
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Referential integrity
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* Known to be important (e.g., Java, databases)

* Not universal (e.g., web “404” errors)

-

A double-edged sword

* Enforcing referential integrity
creates other security vulnerabilities r—'u—-

T—
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Accidental persistence
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Referential security goals

1. Ensure referential integrity
2. Prevent accidental persistence
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Storage attacks
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Referential security goals

1. Ensure referential integrity
2. Prevent accidental persistence
3. Prevent storage attacks
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A framework for referential security

o Static analysis for enforcing referential security:

 Presented as type system of A

— with
A persisc €Xtends A with:

— objects (mutable records)

language

persist

— references (immutable references to records)

1. Ensure referential integrity
2. Prevent accidental persistence
3. Prevent storage attacks
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Preventing accidental persistence

« Persist by policy, not by reachability

° Ea 1. Ensure referential integrity
v" Prevent accidental persistence
PE 3. Prevent storage attacks

persistent

policy
levels

transient
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Preventing accidental persistence

« Persist by policy, not by reachability

« Each object has a
persistence policy p

Node-set interpretation:
Who can delete object?

T=0

: policy
{alice} levels {bob}

1 = {alice,bob} 1. Ensure referential integrity
v Prevent accidental persistence
3. Prevent storage attacks
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Ensuring referential integrity

« Type system ensures all persistence
failures are handled

try e, catch p: e, Who can delete object?
T=U

— Factors out failure-handling code

policy bob}

alice
{ } levels

1 = {alice,bob}

v" Ensure referential integrity
v" Prevent accidental persistence
3. Prevent storage attacks
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Ensuring referential integrity

« Type system ensures all persistence
failures are handled

try e, catch p: e, Who can delete object?
— Factors out failure-handling code N
« Typing judgement: aice} (20 toob)
ipe,H e 7, X L = {alice,bob}

— H = failures handled by context
- X = possible failures produced by e

v" Ensure referential integrity

— Invariant: X C j{ v" Prevent accidental persistence
3. Prevent storage attacks
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Directory example
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* Programs must be ready to handle failure:
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try Lyon.show () catch bob:

p= {bob?

Who can delete object?

T=0C

policy bob}

alice
{ } levels

1 = {alice,bob}

v" Ensure referential integrity
v" Prevent accidental persistence
3. Prevent storage attacks
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Directory example
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Who is the adversary? -

. -_ v X 3
Alice? Bob? Someone else? bt
v L ¢ Ak I
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Modelling the adversary

Assume adversary controls some nodes in system

Adversary modelled as a point o on lattice

— Cannot affect objects having policies at or above a

T=0
/ \ Node-set interpretation:

{alice}
\

\{

{alice, chuck}

\

alice, bob}

/(ch uck}\\

1 = {alice, bob, chuck}

Jed Liu - Defining and Enforcing Referential Security

{bob} o = set of nodes not controlled
by adversary

N Adversary cannot affect

{bob, chuck} v" Ensure referential integrity

/ v" Prevent accidental persistence
3. Prevent storage attacks



Preventing storage attacks

 Each object has a creation authority policy a
— Authority policy for short
— Restricts ability to create new refs

— Taken from same lattice as
persistence policies

no one can create ref

policy
levels
v" Ensure referential integrity
v" Prevent accidental persistence
anyone can create ref 3. Prevent storage attacks
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Preventing storage attacks

 Each object has a creation authority policy a
— Authority policy for short
— Restricts ability to create new refs

— Taken from same lattice as
persistence policies

Node-set interpretation:
Who can create reference?

T=0

: olic
{alice} [I)evelz {bob} v Ensure referential integrity
v" Prevent accidental persistence

3. Prevent storage attacks
1 = {alice,bob} 5
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Preventing storage attacks

 Each object has a creation authority policy a

— Authority pOlICy for short Host-set interpretation:
Who can create reference?
— Restricts ability to create new refs T=0

— Taken from same lattice as

. .. {alice} policy {bob}
persistence poI|C|es

levels

« What if you don’t have authority? 1 = falice,bob}

— (Hard) References have referential integrity,

require authority
v Ensure referential integrity
— Soft references do not v Prevent accidental persistence

v Prevent storage attacks
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Example

( alice YA ( bob 1B

ﬁ = {alicem \F = {bOb}\l Who can create reference?

docs photos docs photos T=0Q

— —

a={alice} a=falice] |a={bob} a={bob}l (. policy . o,

N levels
itinerary | Lyon
g prmm—— e EE > 1 = {alice,bob}
_a = {alice,bob} ) L a = {bob}
p = {alice} p = {bob}
hard ref
_softref
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Integrity

 Adversary controls some nodes

— Can modify some objects =» affect program state

— Can affect decision to create references

if Lthenx.f=0

« To enforce authority, type system tracks:
— Integrity of values

— Integrity of control flow
I"peccHE-e:T, X

« pc bounds authority of references created by e
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Policies on reference types

 Reference types have policies too

— Persistence policy p
« Lower bound on persistence of referent

« Ensures persistence failures are handled when using ref
— Authority policy a™
« Upper bound on authority required by referent

. Prevents storage attacks: need a™ authority to copy ref

. Subtyping contravariant on p, covarianton a™

Jed Liu - Defining and Enforcing Referential Security



A

persist

pe,H
Base types b= bool | 7] —— T2 | R |soft R

Types Tu=by |1
Values wv,uxu= x|true|false|* | m® |soft m® | Nz :7)[pe;H].e (| L)
Terms eu= v | vy vg|if vy thenegelse es | {x; = fu?;}s | v.x | V.2 = V9
| soft e | eqlies | exists v asx: eq else ey | let 2 = ey in ey
| try eq catch p: ey

« soft e — creates soft ref out of hard ref

e existsvasx:e,elsee,

— checks whether soft ref still valid
(if yes, promotes to hard ref)

e try e, catch p: e, — persistence-failure handler
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A

persist

pe,H
Base types b= bool | 7] —— T2 | R |soft R

Types  7u=b,|1
Values wv,uxu= x|true|false|* | m® |soft m® | Nz :7)[pe;H].e (| L)
Terms eu= v | vy vg|if vy thenegelse es | {x; = t.:?;}s | v.x | V.2 = V9
| soft e | eqlies | exists v asx: eq else ey | let 2 = ey in ey
| try eq catch p: ey

« Operational semantics

— Machine configuration: <e, M>

/N

partially evaluated program program memory
* maps typed locations m® to records
or to L if deleted

— Small step: <e,, M;> — <e,, M,>

« Includes model of garbage collector
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Power of the adversary

« Between program steps, adversary can arbitrarily:

— Create new objects

« Objects must have low integrity & low persistence
— Assign into low-integrity fields

— Delete low-persistence objects

« Matches assumption: adversary has total control
over its nodes
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Proving referential security

« ldea: execution with adversary should be
“equivalent” to execution without adversary

« But memory locations may not match up

— Relate traces using homomorphism ¢ on typed locations

with adversary (I) without adversary
T — Properties of ¢
s > * Partial
> * Injecti
& ——— | e
. S * Type-preserving
. > * Isomorphic when restricted to:
~~L_ — — high-integrity locations

— high-integrity locations — high-persistence locations

— high-persistence locations

Jed Liu - Defining and Enforcing Referential Security



Security relation

 For expressions: e zﬁ e,

— Expressions are equivalent when locations are
transformed by ¢

Jed Liu - Defining and Enforcing Referential Security



Security relation

 For expressions: e zﬁ e,

— Expressions are equivalent when locations are
transformed by ¢

« For memories: M, zg M,

with adversary without adversary
m, . o(m,) d)(.) where m, is mapped by ¢
m, ' o(m,) H. where m, is high-authority

and high-persistence
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Referential security

« Theorem:

Security relation is preserved by computation
<e, M;> —— <e’, M'}>

___Withadversary D I — -

& ] ]
<e,, M,> —— <e’,, M',>

(assuming e; well-typed and certain well-formedness conditions)

« Lemma: Adversary cannot cause more high-
authority locations to become non-collectible
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Related work

« System mechanisms (orthogonal to lang. model)
— e.g.,, improving referential integrity of hyperlinks

Liblit & Aiken
— Type system for distributed data structs (no security)

Riely & Hennessey
— Type safety in distributed system w/ partial trust

Chugh et al.

— Dynamically loading untrusted JavaScript
Information flow: non-interference
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Referential security goals <e, M;> — <e’, M’;>
1. Ensure referential integrity
2. Prevent accidental persistence R R

3. Prevent storage attacks
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