
SML2Java: A Source to Source Translator

Justin Koser, Haakon Larsen, and Jeffrey A. Vaughan

Cornell University

Abstract. Java code is unsafe in several respects. Explicit null refer-
ences and object downcasting can cause unexpected runtime errors. Java
also lacks powerful language features such as pattern matching and first-
class functions. However, due to its widespread use, cross-platform com-
patibility, and comprehensive library support, Java remains a popular
language.
This paper discusses SML2Java, a source to source translator. SML2Java
operates on type checked SML code and, to the greatest extent possible,
produces functionally equivalent Java source. SML2Java allows program-
mers to combine existing SML code and Java applications.
While direct translation of SML primitive types to Java primitive types
is not possible, the Java class system provides a powerful framework for
emulating SML value semantics. Function translations are based on a
substantial similarity between Java’s first-class objects and SML’s first-
class functions.

1 Introduction

SML2Java is a source-to-source translator from Standard ML (SML), a statically
typed functional language [8], to Java, an object-oriented imperative language.
A successful translator must emulate distinctive features of one language in the
other. For instance, SML’s first-class functions are mapped to Java’s first-class
objects, and an SML let expression could conceivably be translated to a Java
interface containing an ’in’ function, where every let expression in SML would
produce an anonymous instantiation of the let interface in Java. Similarly, many
other functional features of SML are translated to take advantage of Java’s
object-oriented style. Because functional features such as higher-order functions
must ultimately be implemented using first-class constructs, we believe one can
only achieve a clean design by taking advantage of the strengths of the target
language.

SML2Java was inspired by problems encountered teaching functional pro-
gramming to students familiar with the imperative, object-oriented paradigm.
It was developed for possible use as a teaching tool for Cornell’s CS 312, a course
in functional programming and data structures. For the translator to be a suc-
cessful educational tool, the translated code must be intuitive for a student with
Java experience.

On a broader level, we wish to show how functional concepts can be mapped
to object-oriented imperative concepts through a thorough understanding of each

model. In this regard, it becomes important not to force functional concepts upon
an imperative language, but rather to translate these functional concepts to their
imperative equivalents.

2 Translation

This section discusses the choices we made in our translation of SML to Java.
Where pertinent, we will also discuss the benefits and drawbacks of our design
decisions.

2.1 Primitives

SML primitive types, such as int and string, are translated to Java classes.
The foregoing become Integer2 and String2, respectively. Ideally, SML primitives
would translate to their built-in Java equivalents (e.g. int → java.lang.Integer),
but these classes (e.g. java.lang.Integer) do not support operations such as in-
teger addition or string concatenation [10]. We do not map directly to int and
string because Java primitives are not derivatives of Object, cannot be used with
standard Java collections, and are not compatible with our function and record
translations. The latter will be shown in sections 2.2 and 2.4. Our classes, which
are based on Java.util.*, include necessary basic operators and fit well with
function and record translation. While Hicks [6] addresses differences between
the SML and Java type systems, he does not discuss interoperability. Blume [4]
treats the related problem of translating C types to SML.

Figure 1 demonstrates a simple translation. The astute reader will notice sev-
eral superfluous typecasts. Some translated expressions formally return Object.
However, because SML code is typesafe, we can safely downcast the results of
these expressions. The current version of SML2Java is overly conservative, and
inserts some unnecessary casts. Additionaly, the add function looks quite com-
plicated. This is consistent with other function translations which are discussed
in section 2.4.

2.2 Tuples and Records

We follow the SML/NJ compiler (section 3) which compiles tuples down to
records. Thus, every tuple of the form (exp1, exp2, ...) becomes a record of
the form {1=exp1, 2=exp2, ...}. This should not surprise the avid SML fan as
SML/NJ will, at the top level, represent the record {1=“hi”, 2=“bye”} and the
tuple (“hi”,“bye”): string*string identically.

The Record class represents SML records. Every SML record value maps to an
instance of this class in the Java code. The Record class contains a private data
member, myMapping, of type java.util.HashMap. SML records are translated to
a mapping from fields (which are of type String) to the data that they carry
(of type Object). The Record class also contains a function add, which takes a

Fig. 1. Simple variable binding
SML Code:

1 val x=40

2 val y=2

3 val z=x+y

Java Equivalent:

1 public class TopLevel {

2 public static final Integer2 x = (Integer2)

3 (new Integer2 (40));

4
5 public static final Integer2 y = (Integer2)

6 (new Integer2 (2));

7
8 public static final Integer2 z = (Integer2)

9 (Integer2.add ()). apply (((

10 (new Record ())

11 .add ("1", (x)))

12 .add ("2", (y))));

13
14 }

String and an Object as its parameters and adds these to the mapping. A record
of length n will therefore require n calls to add. Record projection is little more
than a lookup in the record’s HashMap.

2.3 Datatypes

An SML datatype declaration creates a new type with one or more construc-
tors. Each constructor may be treated as a function of zero or one arguments.
SML2Java treats this model literally. An SML datatype, dt, with constructors c1,
c2, c3 . . . is translated to a class. This class, also named dt, has static methods
c1, c2, c3 Each such method returns a new instance of dt.

Thus, SML code invoking a constructor becomes a static method call in the
translated code. It is important to note that this process is different from the
translation of normal SML functions. The special handling of type constructors
greatly enhances translated code readability.

A datatype translation is given in figure 3. As the SML langauge enforces
type safety, constructor arguments can simply be type Object. Although more
restrictive types could be specified, there is little benefit in the common case
where the type is Record.

Fig. 2. Two records instantiated
SML Code:

1 val a = { name="John Doe ", age =20}

2 val b = (" John Doe ", 20)

Java Equivalent:

1 public static final Record a = (Record)

2 ((new Record ())

3 .add("name ", new String2 ("John Doe ")))

4 .add("age ", (new Integer2 (20)));

5
6 public static final Record b = (Record)

7 ((new Record ())

8 .add ("1", new String2 ("John Doe ")))

9 .add ("2", (new Integer2 (20)));

2.4 Functions

In our translation model, the Function class encapsulates the concept of an
SML function. Every SML function becomes an instance of this class. The Java
Function class has a single method, apply, which takes an Object as its only pa-
rameter and returns an Object. The Function class encapsulation is necessitated
by the fact that functions are treated as values in SML. As a byproduct of this
scheme, function applications become intuitive; any application is translated to
Function Name.apply(argument).

At an early design stage, the authors considered translating each function to
a named class and a single instantiation of that class. While this model provides
named functions that can be passed to other functions and otherwise treated as
data, it does not easily accommodate anonymous functions. A strong argument
for the current model is that instantiating anonymous subclasses of Function
provides a natural way to deal with anonymous functions.

We believe this is a sufficiently general approach, and can handle all issues
with respect to SML functions (including higher-order functions). In fact, every
SML function declaration (i.e. named function) is translatead, by the SML/NJ
compiler, to a recursive variable binding with an anonymous function. Therefore
our treatment of anonymous functions and named functions mirror each other
and this similarity lends itself to code readability.

Other authors have used different techinques for creating functions at run-
time. For example, Kirby [7] uses the Java compiler to generate bytecode dynam-
ically. While powerful and well suited for imperative programming, this approach
is not compatible with the functional philosophy of SML.

In figure 4, the lines that contain the word “Pattern” form the foundation of
what will, in future revisions of SML2Java, be fully generalized pattern matching.
Pattern matching is done entirely at runtime, and consists of recursively com-

Fig. 3. A dataype declaration and instantiation
SML Code:

1 datatype qux = FOO | BAR of int

2
3 val myVariable = FOO

4 val myOtherVar = BAR (42)

Java Equivalent:

1 public class TopLevel {

2 public static class qux extends Datatype {

3
4 protected qux(String constructor){

5 super(constructor);

6 }

7
8 protected qux(String constructor,Object data){

9 super(constructor , data);

10 }

11
12 public static qux BAR(Object o){

13 return new qux("BAR", o);

14 }

15
16 public static qux FOO(){

17 return new qux("FOO");

18 }

19
20 }

21 public static final qux myVariable = (qux)

22 qux.FOO();

23
24 public static final qux myOtherVar = (qux)

25 qux.BAR((new Integer2 (42)));

26
27 }

paring components of an expression’s value with a pattern. SML/NJ performs
some optimizations of patterns at compile time [1]. However these optimizations
are, in general, NP-hard [3] and SML2Java does not support them. Currently
patterns are limited to records (including tuples), wildcards and integer con-
stants.

Fig. 4. Named function declaration and application
SML Code:

1 val getFirst = fn(x:int, y:int) => x

2 val one = getFirst (1,2)

Java Equivalent:

1 public static final Function getFirst = (Function)

2 (new Function () {

3 Object apply(final Object arg) {

4 final Record rec = (Record) arg;

5 RecordPattern pat = new RecordPattern ();

6 pat.add ("1", new VariablePattern(new Integer2 ()));

7 pat.add ("2", new VariablePattern(new Integer2 ()));

8 pat.match(rec);

9 final Integer2 x = (Integer2) pat.get ("1");

10 final Integer2 y = (Integer2) pat.get ("2");

11 return (Integer2) (x);

12 }

13 });

14
15 public static final Integer2 one = (Integer2)

16 (getFirst).apply (((

17 (new Record ())

18 .add ("1", (new Integer2 (1))))

19 .add ("2", (new Integer2 (2)))));

2.5 Let Expressions

A Let interface in Java encapsulates the SML concept of a let expression. The
Let interface has no member functions. Every SML let expression becomes an
anonymous instantiation of the Let interface with one member function, in. This
function has no parameters and returns whatever type is appropriate given the
original SML expression. The in function is called immediately following object
instantiation.

A different approach would be to have the Let interface contain the function
in. Here, in would have no formal parameters, and would return an Object.

The advantage to this would be its consistency with respect to our function
translations (i.e. the apply function), but a possible disadvantage is excessive
typecasting, which can greatly reduce readability.

One might also attempt to separate the Let declaration from the call to its
in function. If implemented in the most direct manner, such a model would,
like the previous one, require that the Let interface contain an in function. This
scheme would improve code readability. However, as one often has several Let
expressions in the same name-space in SML, this model would likely suffer from
shadowing issues.

Fig. 5. Let expressions are translated like functions
SML Code:

1 val x =

2 let

3 val y = 1

4 val z = 2

5 in

6 y+z

7 end

Java Equivalent:

1 public static final Integer2 x = (Integer2)

2 (new Let () {

3 Integer2 in() {

4 final Integer2 y = (Integer2) (new Integer2 (1));

5 final Integer2 z = (Integer2) (new Integer2 (2));

6 return (Integer2) (Integer2.add ()). apply (((

7 (new Record ())

8 .add ("1", (y)))

9 .add ("2", (z))));

10 }

11 }).in();

2.6 Module System

Our translation of SML’s module system is straightforward. SML signatures
are translated to abstract classes. SML structures are translated to classes that
extend these abstract signature classes. A structure class only extends a given
signature class if the original SML structure implements the SML signature.
Structure declarations that are not externally visible in SML (i.e. not included
in the implemented signature) are made private data-members in the generated

Java structure class. This is demonstrated in figure 6.

Fig. 6. Translation of a signature and a structure
SML Code:

1 signature INDEX_CARD = sig

2 val name : string

3 val age : int

4 end

5
6 structure IndexCard :> INDEX_CARD = struct

7 val name = " Professor Michael Jordan"

8 val age = 31

9 val super_secret = " This secret cannot be visible to the outside"

10 end

Java Equivalent:

1 public class TopLevel {

2 private static abstract class INDEX_CARD {

3 public static final String2 name = null;

4 public static final Integer2 age = null;

5 }

6
7 public static class IndexCard extends INDEX_CARD {

8 public static final String2 name = (String2)

9 (new String2 (" Professor Michael Jordan "));

10
11 public static final Integer2 age = (Integer2)

12 (new Integer2 (31));

13
14 private static final String2 super_secret = (String2)

15 (new String2 (" This secret cannot be visible to the outside "));

16
17 }

18
19 }

3 Implementation

Our primary task was to translate high-level SML source code to high-level Java
source code. As there are several available implementations of SML, we chose to
use the front end of one, Standard ML of New Jersey (SML/NJ) [9]. We use the
development flavor of the compiler (sml-full-cm) to parse and type-check input

SML code. We then translate the abstract syntax tree generated by SML/NJ to
our own internal Java syntax tree and output the Java code in source form.

Taking advantage of the SML/NJ type checker gives us a strong guarantee
regarding the safety of the code we are translating. To cite Dr. Andrew Appel,
a program produced from this code ”cannot corrupt the runtime system so that
further execution of the program is not faithful to the language semantics” [2].
In other words, such a program cannot dump core, access private fields, or mis-
take types for one another. It would be interesting to investigate whether these
facts, combined with the translation semantics of SML2Java, imply that similar
guarantees hold in the generated Java code.

Other properties of the Core subset of SML are discussed by VanIngwe-
gen [12]. Using HOL [5], she is able to prove, among other things, determinism
of evaluation.

4 Conclusion and Future Goals

The current version of SML2Java translates many core constructs of SML, in-
cluding primitive values, datatypes, anonymous and recursive functions, signa-
tures and structures. SML2Java succeeds in translating SML to Java code, while
respecting the functional paradigm.

Parametric polymorphism is a key construct that the authors would like to
implement in SML2Java. Java 1.5 (due out late 2003) will directly support gener-
ics [11], and we believe waiting for Sun’s implementation will facilate generating
clean Java code. In addition, Java’s generics will resemble C++ templates, and
our treatment of parametric polymorphism should highlight the relative merits
of each approach.

We would like to add support for several less critical SML constructs. Among
these are exceptions, vectors, open declarations, mutual recursion, functors, and
projects containing multiple files. The majority of these should be implementable
without excessive difficulty, and each is expected to be a valuable addition to
SML2Java.

5 Acknowledgements

This project was performed as independant research under the guidance of Dex-
ter Kozen, Cornell University. We would like to thank Professor Kozen for many
insightful discussions and much valuable advice. We would also like to thank the
following for helpful advice: Andrew Myers, Cornell University, and Tore Larsen,
Tromsø University.

References

1. Aitken, William. SML/NJ Match Compiler Notes http://www.smlnj.org/compiler-
notes/matchcomp.ps (1992)

2. Appel, Andrew W. A critique of Standard ML http://ncstrl.cs.princeton.edu/
expand.php?id=TR-364-92 (1992)

3. Baudinet, Marianne and MacQueen, David. Tree Pattern Matching for ML (ex-
tended abstract) http://www.smlnj.org/compiler-notes/85-note-baudinet.ps (1985)

4. Blume, Matthias. No-Longer-Foreign: Teaching an ML compiler to speak C ”na-
tively” Electronic Notes in Theoretical Computer Science 59 No. 1 (2001)

5. Gordon, Melham Introduction to HOL. A theroem proving environment for higher
order logic Cambridge University Press, 1993

6. Hicks, Michael. Types and Intermdiate Representations University of Pennsylvania
(1998).

7. Kirby, Graham, et al. Linguistic Reflection in Java Software - Practice & Experi-
ence 28, 10 (1998).

8. Milner, Robin, et al. The Definition of Standard ML - Revised. Cumberland, RI:
MIT Press, 1997.

9. SML/NJ Fellowship, The. Standard ML of New Jersey http://www.smlnj.org (July
29, 2003).

10. Sun Microsystems. Java 2 Platform, Standard Edition, v 1.4.2 API Specification
http://java.sun.com/j2se/1.4.2/docs/api/ (July 18, 2003).

11. Sun Microsystems. JSR 14 Add Generic Types To The Java Programming Lan-
guage http://www.jcp.org/en/jsr/detail?id=14 (July 24, 2003).

12. VanIngwegen, Myra. Towards Type Preservation for Core SML http://www.myra-
simon.com/myra/papers/JAR.ps.gz

