Alpha Seeding for Support Vector Machines

Dennis DeCoste
Machine Learning Systems Group
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive; Pasadena, CA 91109
http://www-aig.jpl.nasa.gov/home/decoste/

decoste@aig.jpl.nasa.gov

ABSTRACT

A key practical obstacle in applying support vector ma-
chines to many large-scale data mining tasks is that SVM
training time generally scales quadratically (or worse) in the
number of examples or support vectors. This complexity is
further compounded when a specific SVM training is but
one of many, such as in Leave-One-Out-Cross-Validation
(LOOCYV) for determining optimal SVM parameters or as
in wrapper-based feature selection. In this paper we explore
new techniques for reducing the amortized cost of each such
SVM training, by seeding successive SVM trainings with the
results of previous similar trainings.

Categories and Subject Descriptors
1.5.5 [Computing Methodologies]: Pattern Recognition-
Implementation

General Terms

support vector machines, classification, training speed-ups

1. INTRODUCTION

Recent progress on speeding up the training time for support
vector machines (e.g. [7],[5]) has made SVM’s practical now
for training sets that are fairly large. However, the time
complexities of those approaches are still typically quadratic
in the number of examples (V) in the training data set.
This is especially problematic in a data mining context, due
both to commonality of enormous data set sizes and to the
frequent need for high-quality model selection over many
candidate SVM’s.

We therefore seek methods which can reuse previous results
from similar SVM’s in order to amortize training costs. In
the best case, this could lead to amortized SVM training
costs which are linear in N. For example, Leave-One-Out-
Cross-Validation (LOOCYV) estimates of generalization er-

Kiri Wagstaff
Department of Computer Science
Cornell University
4156 Upson Hall; Ithaca, NY 14853
http://www.cs.cornell.edu/home/wkiri/

wkiri@cs.cornell.edu

ror for a data set of N examples involve N trainings, each
involving N — 1 training examples , thus leading to cubic
overall time complexity. If each SVM for each of the size
N — 1 data sets could be intelligently initialized from the
result of the SVM trained on all N examples, only a small
amount of additional work might be required for each. The
overall cost might well remain quadratic in N (i.e. domi-
nated by the cost of the SVM trained on the full data set)
— and thus effectively have cost linear in N for each of the
N SVM’s trained for the different size N — 1 data sets.

An underlying motivation of our work is to try to bring
SVM’s substantially closer to the fast near-linear complexity
of LOOCYV using k nearest-neighbors, (a factor in k-NN’s
popularity in practice), while retaining the advantages of
SVM’s (e.g. maximum margins).!

After reviewing the basic aspects of SVM classification, we
present a variety of “alpha seeding” methods for reducing
SVM training time. We then present some empirical results
which illustrate the potential promise of such alpha seeding
and help us begin to understand the tradeoffs involved. Al-
though we have not yet achieved linear amortized costs, our
results appear promising towards that effort, as well as of
practical use in their own right.

2. SUPPORT VECTOR MACHINES

Support vector machines [9, 10] represent a relatively new
and promising approach to machine learning. Recent work
has established SVM’s as providing state-of-the-art perfor-
mance on classification and regression tasks across a variety
of real-world applications (e.g. see [9] and [4]).

In this paper, we focus on SVM’s for binary classification [1].
Each label is valued either “+1” or “-1”, indicating either a
positive or negative example, respectively.

Let X4 be an na by D matrix representing the training set
and Xp be an np by D matrix representing the test set,
where D is the dimensionality of the input space (i.e. D
features) and na and np are the number of training and

'For Euclidian distance, complexity logarithmic in N is of-
ten achieved for k-NN, using indexing schemes such as k-d
trees. However, for the general distance metrics employed
within SVM kernel methods [8, 3] sub-linear performance
for k-NN’s is not as obviously achieved.

test examples, respectively. Let L4 be a vector of the na
known labels for the training set and Lp be a vector of the
np actual (often unknown) labels for the test set. Let ys
be a vector of the np label predictions of the automated
classifier for the test set Xp.

The following constrained quadratic optimization (QP) prob-
lem is commonly used to train a SVM classifier:

mazimize: Y ai — 23N aia LiLi K (wi, ;)
subject to: 0< a; <C, Y, a;L; =0,

using notational simplifications: N = na, L = Ly, and z;
is i-th example (row) in X4.

The SVM prediction, for example = (vector of size D), is:

n
f(z) = sign(z a;L; K (z,2;) +b),
i=1
where scalar b (bias) and vector a (of size N) contains the
variables determined by the above QP optimization. Thus,
the test predictions yp are f(z), for each z in Xp.

K(x;,z;) represents a kernel which implicitly projects two
given examples from D dimensional input space into some
(possibly infinite) feature space. The simplest is the linear
kernel, implemented as a simple dot product:

d
K(u,v) =u®uv= Zui-vi.
i=1
The polynomial kernel is defined by a non-linearly squashed
dot-product of the following form:

K(u,v) = (uev+r)

with polynomial degree parameter d. Varying the continu-
ous offset parameter r changes the relative weighting of the
(implicit) terms in the nonlinear polynomial feature space.

Support vectors are those training example vectors for which
a; > 0. As can be seen from the above summation used to
generate predictions, a zero a; means that the i-th training
example does not contribute to the prediction. In SVM ap-
plications often only 10% or less of the training examples
become supports. Such sparsity is a key property of SVM’s
that helps them avoid overfitting noise. A general rule of
thumb is that the expected test error of the SVM is propor-
tional to the ratio of the number of support vectors to the
number of all training examples.

Parameter C' > 0 defines a soft margin — a trade-off be-
tween regularization (sparsity of non-zero alphas) and train-
ing errors. All misclassified training examples, for example,
end up with alphas at C. An appropriate value for C is typ-
ically determined via cross validation.

3. TYPESOF ALPHA SEEDING

Existing SVM methods initialize all alpha (o) values for the
QP optimization to 0. We use the term alpha seeding to
refer to any method which provides initial estimates of the
alpha values. We restrict ourselves to methods which start

each SVM training with feasible alphas (i.e. which satisfy
the bounds and the single equality constraint), although it
is conceivable that infeasible seeds may sometimes be use-
ful for specific SVM training algorithms. Specifically, we
investigate seeding methods which make use of final output
alphas from one training to initialize a similar one.

To motivate our work and establish a framework, below we
discuss a variety of ways in which alpha seeding can be used
to improve various aspects of SVM training. In Section 4,
we empirically explore some of these in more detail.

All the tasks for which we introduce alpha seeding methods
can be solved without seeding (i.e. just start each with zero
alphas). Thus, alpha seeding offers no new theoretical ad-
vance, as, say, a new type of SVM kernel might. Instead,
the goal of alpha seeding is drastically faster convergence to
the final alpha values for the SVM problem(s) of interest.
However, it is important to keep in mind that resource allo-
cation is almost always a concern in practice. For example,
if one can speed the SVM training for one kernel or C value
by a factor of 10, one may be able to search for the optimal
of ten different types of kernels (or C values) in the same
fixed available overall training time.

It is also useful to keep in mind that all of these approaches
to alpha seeding can amortize the cost of kernel computa-
tions across the entire set of of SVM trainings. Dot-product
caches are common even for single SVM trainings, as in most
practical SVM trainers (e.g. [5]). Our alpha seeding tech-
niques exploit dot-product caches even further, with later
trainings often requiring no additional kernel computations.
When input dimensionality D is large, these savings can be
substantial (typically more than 200% versus no cache).

A fundamental issue is how alphas from a previous training
should be adapted into appropriate seeds for the next train-
ing. As we shall explore, there are typically much more effec-
tive approaches than simply passing the alphas unchanged
between trainings.

The key issue determining whether a given alpha seeding
method is effective for a given task is, of course, whether the
sum of the training costs over the sequence of successively
seeded SVM’s is lower than the cost of directly training the
non-seeded SVM of interest. We will explore that issue in
Section 4, after first discussing the various methods.

3.1 Computing Actual LOOCYV Error

One of the simplest and yet effective alpha seeding methods
is for efficient LOOCV estimation of generalization error.
LOOCYV requires N SVM trainings, where the i-th SVM is
tested on only the i-th example and is trained on the N —1
other examples. Unlike other methods below, each such case
is for fixed parameters (e.g. for given C, type of kernel, etc.).
Doing multiple LOOCV’s, for various parameter values, pro-
vides a popular empirical-based means of model selection.

SVM theory provides estimates of the worst case bounds on
the LOOCYV error, such as the fraction of training examples
which become support vectors. However, since such bounds
are necessarily loose, it can be useful for accurate model
selection to compute the actual LOOCYV error, especially if

it can be obtained efficiently.

Our alpha seeding approach to LOOCYV is as follows. First,
train the SVM for all N examples. Denote the resulting al-
phas as 8. For each of the examples (7) out of the full IV,
pretend in turn that that i-th one is not in the data set.’
If B; is already 0, then simply classify this i-th example as
the full SVM does (and record if it disagrees with L;). Oth-
erwise, initialize the N alphas (a) to be those of 8 and set
a; to 0 (i.e. forget it). In that case, the equality constraint
Ef’: 1a;L; = 0 is violated, by a residual of magnitude ;.
To re-establish the equality, we must distribute that resid-
ual to some of the other alphas. Finally, after training the
i-th SVM from the so-adjusted alphas «, we classify the i-th
example (and record if it disagrees with L;).

We have found that a simple and yet rather effective method
is to redistribute the residual among all the in-bound alphas
(i-e. those greater than 0 and less than C). A key motiva-
tion is that modern SVM trainers tend to work on in-bound
alphas before re-examining at-bound ones. This is because
generally once an alpha reaches 0 or C it will tend to stay
there during the remainder of an SVM training.

We have explored various schemes for redistributing the
residual among the in-bound alphas. One which routinely
performs well, although not the best in every case, is to uni-
formly add an equal portion of 3; to each in-bound alpha
o for which its corresponding example j is in same class as
the hold-out (i.e. same label L;). That is, add % to each,
where z is the number of other examples of that class with
in-bound alphas. The exception is that if this causes some
alpha to reach (i.e. want to exceed) the limit C, then any
remaining residual is (uniformly) redistributed among the
remaining in-bound alphas of that class, until all residual
is gone. We call this scheme uniform same-class residual
redistribution, and report results with it in Section 4.1.

3.2 GrowC: Quick Training for LargeC

A more complex alpha seeding method involves training
SVM’s using successively larger C values. It is commonly
observed in SVM literature that larger C values tend to re-
quire substantially more training time than smaller values.
However, we theorized that initial training with a smaller
C could quickly identify approximate alpha weights which
later trainings with larger C’s would be able to refine.

More precisely, let S = [Ci,...,Cr] where C; < Ci41 be
a training schedule that produces correct alpha weights for
C,,, the target value of C. We will refer to the training phase
that uses C; as S;. The GrowC approach takes the alphas
produced at the end of S; and uses them as seeds for S;1.

The heart of any such strategy relies on determining an ef-
fective schedule for growing C. Our goal in this work is to
establish that good schedules do exist. We defer in-depth
study into automatically producing them to future work.

Another key issue involves adjustments to the alphas be-

2For efficiency, we do not actually destroy the original data
set, but instead have refined our SVM algorithms to allow
ignoring one selected example during the QP optimization.

tween training phases. When moving from S; to Si+1, the
range of allowable alpha values expands from [0...C;] to
[0...Cit1]. There are several options available. The alphas
from S; can be passed unchanged to Siyi1. Alternatively,
the S; alphas that are at C; can be moved to C;11. A third
alternative is to scale all of the alphas into the new range.
Lastly, a more complex (possibly adaptive) method could
adjust only those alphas that are likely to move from their
S; values. In Section 4.2, we compare the results of the
first three options empirically and demonstrate the impor-
tance of good choices for alpha adjustment between training
phases.

3.3 Kerned Parameter Via Cross Validation

Another natural use of alpha seeding is for successive cross
validations over some range of settings for a kernel param-
eter. Previous work with Kernel Adatron SVM trainers [2]
showed this can be effective, often not costing much more
to train for a large number of parameter values than for the
first one.

3.4 Heuristically Guessing Initial Alphas
Alpha seeds need not be based on previous trainings of very
similar SVM’s. For example, they could be based on geo-
metrical arguments for why a given example is likely to be
support vector or not, or likely to be at C (i.e. a noisy ex-
ample). Guessing which examples will be at 0 or C can be
particularly useful for many SVM training methods, since
such at-bounds cases can often be ignored in many itera-
tions of those algorithms.

A particular method in this area which we have explored is
training a SVM using a linear kernel and then using those
alphas to seed training a SVM for some target nonlinear
kernel. The intuition is that for problems which are only
slightly nonlinear, such seeds can be very close to optimal
for the nonlinear case as well. This idea is especially ap-
pealing given the substantial time savings possible for linear
kernels, due to the feasibility of folding all N alphas into
only D weights necessary to evalute the SVM output for
any example in the linear special case.

4. EXAMPLES

To empirically explore alpha seeding, we modified two com-
mon SVM algorithms, our implementation of SMO [7] (with
improvements of [6]) and the freely available SV M9k [5].
Our modifications include taking seed alphas as arguments,
instead of beginning training from (default) zero alphas.

For our initial experiments to report in this paper we se-
lected the UCI Adult data set, since a fair amount of re-
lated work with this data set has already been published
using the SMO and SV M'9"* algorithms. In particular,
for direct comparison we used Platt’s discretized versions,
consisting of 123 binary input attributes and various sub-
sets of the full set of 32562 [7]. All tests were performed on
a 450Mhz Sun Ultra 60 workstation with 2 Gb of RAM.

4.1 LOOCV Results
For LOOCYV tests, we used the smallest subset Platt re-
ported on in his work [7], which consists of 1604 examples.

Figure 1 (left) shows the cumulative run times for standard
SVM (zero alphas for each of the N LOOCYV retrainings)
and our uniform same-class residual redistribution LOOCV
alpha seeding method (as described in Section 3.1). Our
method was nearly 5 times faster (1733 vs 380 secs).

The training time for full data set was 2.86 secs and re-
sulted in 714 out of 1604 examples being support vectors.
The LOOCYV training for each of the 714 hold-outs which
were support vectors each took roughly the amount of time
as that for full training: mean 2.943 secs, standard deviation
.2923 secs, maximum 4.51 secs, and minimum 2.24 secs. Us-
ing our alpha seeding, training times for the support vector
hold-outs were faster: mean 0.6452 secs, standard deviation
.2245, maximum 1.54 secs, and minimum 0.22secs.

Both methods, of course, computed the same LOOCYV er-
ror rate (16.55%), since their only difference is in speed of
convergence. It is interesting to confirm that this rate is far
below the (well-known to be loose) LOOCYV error estimate
bounds (44.51%) that the standard ratio of support vectors
divided by the number of examples would suggest.

Figure 1 (right) illustrates why our method performed much
better than a standard non-seeded method. It plots all N
training times, sorted from smallest to largest for both meth-
ods. LOOCYV for the 890 non-support vector examples re-
quires no retraining, indicated by a majority of zero train-
ing times. For the 714 support vector examples, there is
substantially more area under the curve using zero seeds
versus redistribution-based seeds. Most zero-seed trainings
required roughly equal time — about the same as the initial
training (2.86 secs). Each of the 714 redistribution-seeded
trainings were faster (slowest was 1.54 secs).

451 11

200 400 600 800 1000 1200 1400 1600

Figure 1: SMO LOOCYV train times (Adultl).
Left: Cumulative time (y-axis) over N = 1604 LOOCV
trainings (x-axis). Higher curve is standard SVM (zero
alpha seeds). Lower curve is our alpha seeding method
(Section 3.1). For linear kernel, with C=1, for UCI Adultl
data set. Right: sorted times for alpha seeds of zeros (top)
vs redistribution-based (bottom). Note different y ranges.

4.2 GrowC Results

For both our modified SMO and SV M'9" algorithms, we
experimented with several schedules for gradually growing
C. In general, we observed that alpha seeding obtained dra-
matic reductions in total runtime for both algorithms. The
Adult data set we used for these experiments is referred to as
“Adult small” in [7], consisting of 11221 training examples.

We have verified that the number of bound and in-bound
alphas we obtain correspond to those reported by Platt. All

runs used a linear kernel and runtimes are averaged over
five trials. We also made use of the cache that stores kernel
computations, so that they need not be recomputed. This
cache persists over each training phase S; (after the first in
a sequence of trainings), to make it comparable to training
from scratch (where the cache is available throughout the
course of training).

Section 3.2 outlined four options for how to seed S;41 using
the results of S;. Below reports how the first three perform.

1 150
+ from scratch

160[| - - direct alpha reuse
-+ scaling bound alphas
— scaling all alphas

+ from scratch
-x- direct alpha reuse
-% scaling bound alphas
—— scaling all alphas

cpu seconds
P
cpu seconds

0.8 1

0.4 0.6 0.4 0.6
C values C values

Figure 2: GrowC times (SMO,SV M'9""): seedings.

4.2.1 Direct Alpha Reuse

Using successively larger values of C and seeding each it-
eration with the alphas found at the end of the previous
one does not always yield runtime benefits, as shown in Fig-
ure 2. For C values less than 0.3 for SM O and for all tested
C values for SV M"9" it is actually more expensive to use
this form of alpha seeding than to proceed from scratch. A
smaller C; restricts which possible alpha values are explored,
thus limiting the initial runtime. But when these alphas are
used as seeds for S;11 with a larger Cit1, a lot of time can be
spent adjusting them gradually into the larger range. This
is especially true for alphas that are at C; at the end of S;
— it is likely that they will end up being at C;+1 at the end
of Si+1, but it may take a long time to push them that far.

4.2.2 Scaling Bound Alphas

This observation leads naturally to the second option: at
the end of Sj, change all alphas that have a value of C; (the
“bound” alphas) to the new C;41 directly. The fact that an
alpha is bound in S; often indicates that it will be bound in
Si+1. If so, alot of time can be saved by immediately jump-
ing to the new boundary value, C;41. Figure 2 shows that
this improves runtime for SMO over Direct Alpha Reuse,
but can still (for C less than 0.1) be more expensive than
training from scratch. Similar trends appear for SV M!9ht,

4.2.3 Scaling All Alphas

Our next option is to scale each alpha value produced by S;
into the new range allowed in S;ti. This is accomplished by
multiplying each alpha value by Cg: . This has the effect of
sending all alphas at C; to the new value Cjy1 and spread-
ing the rest of the in-bound alphas into the new range. In
addition, it keeps zero-valued alphas at 0. As shown in Fig-
ure 2, this strategy achieves the greatest improvements in
runtime. Training SMO from scratch for C = 1.0 requires
about 175 seconds. Scaling All Alphas requires just 19 sec-
onds, a savings of 89% of the total runtime. For SV M9ht,
training from scratch requires 120 seconds, but Scaling All
Alphas requires only 49 seconds (59% savings).

As noted above, the choice of schedule S impacts the effec-
tiveness of alpha seeding. The seeding results in Figure 2
were all produced using schedule S; = [0.01, 0.05, 0.1, 0.3,
0.5, 1.0], which was experimentally determined to work well
with the Adult data. Experiments with other sched-
ules indicate that more graduations tend to yield greater
overall benefits for SM O, but the reverse trend appears for
SV MY Further investigation is required to fully under-
stand what strategies for constructing training sequences are
of most use to each algorithm.

Clearly, intelligent adjustments to alphas between training
phases are essential. It is possible that better alpha adjust-
ment strategies could result in even larger runtime improve-
ments for alpha seeding. In addition, these results were all
gained while using a linear kernel; other kernel types may
require different alpha seeding (or C scheduling) strategies.

424 Larger C Values

Our results demonstrate significant improvements in perfor-
mance for SMO for C values less than or equal to 1.0. Most
of those C values are accompanied by a similar improvement
for SV MY9" However, it is not usually possible to predict
ahead of time what a good C value will be for a problem.
Therefore, good performance over a variety of C values is
important. In particular, large C values have been a chal-
lenge for SVM algorithms. In separate experiments, we were
able to train on the Adult data with a C of 500 in under 85
seconds.® Tt took SV M9 and SMO over 10 minutes to
train with such a large C.* Clearly, alpha seeding reduces
these previously computationally-expensive trainings to rea-
sonable durations.

Another benefit of using a seeding approach is that it can
significantly reduce the time required to find a good value
for C on a new data set. Instead of performing a series
of trainings, all from scratch, with various values of C, we
instead obtain multiple results together, by using a training
sequence that contains many C values of interest. The SVM
produced for each intermediate C; can be used to compute
a test set error, selecting the value giving lowest test error.

5. CONCLUSIONS

Our results suggest that alpha seeding is a promising way for
speeding up SVM training. Although our speedups are often
essentially constant ones, these factors are often much larger
than the impact of other recently published methods for
speeding up SVM’s (e.g. bias intervals in [6] and “shrinking”
in [5]). Thus, they are of significant practical importance.

There are many directions for future work. One is to un-
derstand the nature of the best alpha seedings better, to-
ward speedups that are typically more than nearly-constant
ones (ideally, with amortized linear time cost for each SVM
training). Another is to understand sensitivity issues, such
as how close to the final values the alpha seeds have to be,
for significant speedup gains to be realized. Yet another
is to develop means for automatically finding good growth
schedules for any given task, for our GrowC method.

3The training sequence used was [0.01, 0.05, 0.1, 0.3, 0.5,
1.0, 3.0, 5.0, 10, 15, 20, 30, 50, 100, 500].
“We terminated the training for each one at that point.

‘We also plan to contrast our efficient LOOCYV alpha seeding
approach with Leave-One-Out SVM’s (LOOSVM’s, [11]).
Empirical studies of the computational costs of LOOSVM’s
are not yet available, so it is unclear when each is most
effective — explicit selection from a set of C values as in our
case versus folding the search for C within the optimization
problem (as in LOOSVM’s).

6. ACKNOWLEDGEMENTS

This research was carried out by the Jet Propulsion Labora-
tory, California Institute of Technology, under contract with
the National Aeronautics and Space Administration.

7. REFERENCES
[1] C. Burges. A tutorial on support vector machines for
pattern recognition. Data Mining and Knowledge
Discovery, 2(2), 1998.

[2] N. Cristianini, C. Campbell, and J. Shawe-Taylor.
Dynamically adapting kernels in support vector
machines. Technical Report NeuroCOLT Technical
Report NC-TR-98-017, Royal Holloway College,
University of London, May 1998.

[3] Dennis DeCoste and Michael Burl.
Distortion-invariant recognition via jittered queries. In
Computer Vision and Pattern Recognition
(CVPR-2000), June 2000.

[4] Isabelle Guyon. Online SVM application list. (See
http://www.clopinet.com/isabelle/Projects/SVM/
applist.html.).

[6] T. Joachims. Making large-scale support vector
machine learning practical, 1999. In Advances in
Kernel Methods: Support Vector Machines [9].

[6] S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and
K.R.K. Murthy. Improvements to Platt’s SMO
algorithm for svin classifier design. Technical Report
CD-99-14, Dept. of Mechanical and Production
Engineering, National University of Singapore, 1999.

[7] John Platt. Fast training of support vector machines
using sequential minimal optimization, 1999. In
Advances in Kernel Methods: Support Vector
Machines [9].

[8] B. Scholkopf, A. Smola, and K.R. Miiller. Nonlinear
component analysis as a kernel eigenvalue problem.
Technical report no. 44, Max-Planck-Institut for
Biologische Kybernetik, Tibingen, Dec 1996.

[9] B. Schoelkopf, C. Burges, and A. Smola. Advances in
Kernel Methods: Support Vector Machines. MIT
Press, Cambridge, MA, 1999.

[10] V. Vapnik. The Nature of Statistical Learning Theory.
Springer Verlag, New York, 1995.

[11] Jason Weston. Leave-on-out support vector machines.
In Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI-99), 1999.

