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ABSTRACT
Clustering algorithms have become increasingly important
in handling and analyzing data. Considerable work has been
done in devising effective but increasingly specific clustering
algorithms. In contrast, we have developed a generalized
framework that accommodates diverse clustering algorithms
in a systematic way. This framework views clustering as a
general process of iterative optimization that includes mod-
ules for supervised learning and instance assignment. This
framework has also suggested several novel clustering meth-
ods. In this paper, we investigate experimentally the effi-
cacy of these algorithms and test some hypotheses about
the relation between such unsupervised techniques and the
supervised methods embedded in them.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning

General Terms
Algorithms, design, experimentation

Keywords
Clustering, supervised learning, iterative optimization

1. INTRODUCTION AND MOTIVATION
Although most research on machine learning focuses on in-

duction from supervised training data, there are many situ-
ations in which class labels are not available and which thus
require unsupervised methods. One widespread approach
to unsupervised induction involves clustering the training
cases into groups that reflect distinct regions of the decision
space. There exists a large literature on clustering meth-
ods (e.g., Everitt [3]), a long history of their development,
and increasing interest in their application, yet there is still
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little understanding of the relation between supervised and
unsupervised approaches to induction.

In this paper, we begin to remedy that oversight by ex-
amining situations in which a supervised induction method
occurs as a subroutine in a clustering algorithm. This sug-
gests two important ideas. First, one should be able to gen-
erate new clustering methods from existing techniques by
replacing the initial supervised technique with a different su-
pervised technique. Second, one would expect the resulting
clustering methods to behave well (e.g., form desirable clus-
ters) in the same domains for which their supervised compo-
nent behaves well, provided the latter has labeled training
data available.

In the pages that follow, we explore both ideas in the con-
text of iterative optimization, a common scheme for cluster-
ing that includes K-means and expectation maximization as
special cases. After reviewing this framework in Section 2,
we describe an approach to embedding any supervised algo-
rithm and its learned classifier in an iterative optimizer, and
in Section 3 we examine four supervised methods for which
we have taken this step. In Section 4, we report on exper-
imental studies designed to test our hypotheses about the
relations between behavior of the resulting clustering meth-
ods and that of their supervised components. In closing, we
review related work on generative frameworks for machine
learning and consider some directions for future research.

Figure 1: The iterative optimization procedure.

2. GENERALIZED CLUSTERING
Many clustering systems rely on the notion of iterative

optimization. As Figure 1 depicts, such a system iterates
between two steps – class model creation and data reassign-
ment – until reaching a predetermined iteration limit or until
no further change in reassignments occur. There are many
variations within this general framework; but the basic idea
is best illustrated with some well-known example methods.



2.1 K-means and EM as Iterative Optimizers
Two clustering algorithms that are popular for their sim-

plicity and flexibility are K-means [2] and expectation max-
imization (EM) [1]. Both methods have been studied ex-
perimentally on many problems and have been widely used
in applied settings. Below we review the algorithms briefly,
note their key similarities, and show how their differences
suggest a more general clustering framework.

The K-means algorithm represents each class by a cen-
troid, which it computes by taking the mean for each at-
tribute over all of the data points belonging to that class.
In geometric terms, this corresponds to finding the center
of mass for the instances associated with that class. Data
reassignment involves assigning each instance to the class of
the closest centroid.

In contrast, EM models each class by a probability distri-
bution that it extracts from the training data in the class
model creation step. If the data are continuous, each class
is generally modeled by a n-dimensional Gaussian distribu-
tion that consists of a mean and variance for each attribute.
In the discrete case, P (ck|aj = vjl) is extracted for each
possible combination of class ck, attribute aj , and attribute
value l for aj (vjl). In both cases, when finding these pa-
rameters, the contribution of each instance xi is weighted
by P (xi ∈ ck). Data reassignment is done by recalculating
P (xi ∈ ck) for each instance xi and class ck using the new
class models.

2.2 A General Framework
Although both of these clustering algorithms are based

on iterative optimization, they employ different methods for
developing class models. Thus, we can view them as invok-
ing a different supervised learning algorithm to distinguish
among the classes. The two algorithms also differ in how
they assign instances to classes. K-means assigns each in-
stance to a single class, whereas EM uses partial assignment,
in that each instance is distributed among the classes. We
will refer to the absolute method as the “strict” paradigm
and to the partial method as the “weighted” paradigm.

These observations lead to a general framework for clus-
tering algorithms that involves selecting a supervised learn-
ing algorithm and selecting one of these assignment paradigms.
In the context of K-means and EM, this framework im-
mediately suggests some variants. By using the weighted
paradigm with the K-means classifier, we obtain a weighted
K-means algorithm. Similarly, combining EM’s probabilis-
tic classifier with the strict paradigm produces a variant in
which each instance is assigned strictly to its most proba-
ble class. This variant has been explored under the name
of “strict-assignment EM”, although the partial assignment
method is more commonly used.

Although the classifiers utilized in K-means and EM can
be easily modified to operate with either assignment paradigm,
other supervised algorithms can require more sophisticated
adaptations, as we will see shortly.

3. SUPERVISED LEARNING METHODS
As we have argued, it should be possible to embed any

supervised learning within our generalized clustering frame-
work. We selected four simple algorithms for evaluation,
which we describe below in some detail, including the adap-
tations we made for use in the weighted paradigm. These
adaptations involve altering model production to take into

account the weights of instances and revising instance reas-
signment to give a weight for each class to every instance,
which are then used to produce the next generation of the
class models.

3.1 Prototype Modeler
As described in the context of K-means, the prototype

modeler [13] creates a prototype or centroid for each class
by extracting the mean of each attribute from data points
belonging to that class. Classification of an instance is done
by selecting the class with the centroid closest to it in n-
dimensional space. Because the distance metric is highly
sensitive to variations in scale, our version normalizes all
data to values between zero and one before creating the
prototypes.

In the weighted paradigm, the mean for each attribute be-
comes a weighted average of the training cases. The relative
proximity of each instance to a given centroid determines
the associated weight for that centroid’s class. Formally, we
can express this by

w(xi|ck) = 1− distance(xi, prototype(ck))∑|C|
m−1 distance(xi, prototype(cm))

,

where |C| is the number of classes. The new centroid is then
composed of the weighted mean for each attribute, where the
mean of attribute aj for cluster ck is calculated by

mean(aj |ck) =

∑|X|
i=1 xij · (xi|ck)∑|X|
i=1 w(xi|ck)

,

where xmj is the value of the jth attribute of instance xm.

3.2 Naive Bayesian Modeler
Naive Bayes [2] is a simple probabilistic learning algo-

rithm. As described in the context of EM, each class is
modeled by a probability distribution described by P (ck)
and P (ck|aj = vjl) for each class ck, attribute aj , and at-
tribute value vjl. For nominal attributes, naive Bayes rep-
resents P (ck|aj = vjl) as a discrete conditional probability
distribution, which it estimates from counts in the training
data, and it estimates the class probability P (ck) in a similar
manner. For continuous attributes, it typically uses a condi-
tional Gaussian distribution that it estimates by computing
the mean and variance for each attribute from training data
for each class. To calculate the probability that a new in-
stance belongs to a given class ck, naive Bayes employs the
expression

P (xi ∈ ck) = P (ck)
∏
j

P (ck|aj = vjl) ,

which assumes that the distribution of values for each at-
tribute are independent given the class.

When operating as a strict classifier, the naive Bayes al-
gorithm returns the class with the highest probability for
each instance. In the weighted case, the mean and variance
are found using a weighted sum rather than a strict sum,
while the expression

w(xi|ck) =
P (xi ∈ ck)∑|C|

m=1 P (xi ∈ cm)



determines the weight used in the w(xi|ck) in the reassign-
ment process.

3.3 Decision Stump Modeler
A decision stump [4] relies on a single attribute to classify

instances. The associated induction algorithm selects this
attribute using the information-theoretic measure

info(T ) = −
|C|∑
k=1

freq(ck, T )

|T | · log2(
freq(ck, T )

|T | ) .

If the attribute is continuous, the algorithm generates up
to |C| different partitions of that attribute. It decides how
much to partition the data by the information gained in that
partition:

gain(x) = info(T )−
|P |∑
m=1

|Tm|
|T | · info(Tm) ,

where T is the set of data under consideration, and Tm is a
given subset of T . If the attribute is nominal, the algorithm
creates a separate branch for each attribute value. Each
branch is then associated with a class that constitutes the
majority class of those training cases that are sorted to that
branch of the stump.

To accommodate weighted assignment, we adjust the in-
formation gain equation to sum over the weights of instances,
rather than over strict frequencies, and keep simple statis-
tical information for each branch. The reassignment weight
given to each instance for class ck is calculated by

w(xi|ck) =

∑|B|
m=1 w(xm|ck)∑|C|

n=1

∑|B|
m=1 w(xm|cn)

,

where B is the branch of the decision stump to which that
instance is sorted.

3.4 Perceptron List Modeler
The perceptron modeler is not strictly a simple perceptron

but is based on a list of simple perceptrons [12]. During
classification, a perceptron uses the expressions:

output(P ) =

{
0 if sum < threshold
1 otherwise

and

sum =

|Ai|∑
m=1

xim · wm ,

where wm is a weight that specifies the relative importance
of attribute m. The learning algorithm operates by adjust-
ing the weights associated with each attribute.1 The percep-
tron is limited to differentiating between two classes, so we
employed an ordered list of perceptrons that operates much
like a decision list. The algorithm first learns to differenti-
ate between the majority class and others, which produces
the first perceptron. Instances belonging to the majority

1For the purposes of this study, we used a learning rate of
0.05 and 50 iterations through the training data, which did
well on a wide variety of classification tasks.

class are removed, and the system trains to discriminate the
new majority class from the rest, producing another percep-
tron. This process continues until one class remains, which
is treated as a default.

Although the perceptron traditionally assumes all-or-none
assignment, it seems natural to interpret the scaled differ-
ence between the sum and the threshold as a likelihood.
The weighted variant multiplies the weight of each instance
by the learning rate before updating the model, so that an
instance with a small weight has only a small effect. To
prevent small weights from causing endless oscillations, it
triggers an updating cycle through the data only if an in-
correctly classified instance has a weight of greater than 0.5,
although all instances are used for the actual update.

In reassignment, the weighted method calculates the dif-
ference between the instance value and the threshold, scaled
by a sigmoid:

w(xi|ck) =
1

1 + e(threshold−sum)·5

that produces bounds on the weight size. If an instance were
evaluated as being perfectly at the threshold, the function
would return 0.5. The extra exponential term in e causes a
more extreme assignment. Otherwise the sigmoid was not
tight enough to be useful for the generally small range of
values. Because the perceptron is embedded in a list, the
class weights are not guaranteed to sum to one.

4. EXPERIMENTAL STUDIES
We had two intuitions about our clustering framework

that suggested corresponding formal hypotheses.2 First, we
expected that each algorithm would exhibit a “preference”
for one of the data assignment paradigms by demonstrating
better performance in that paradigm across different data
sets. Second, we anticipated that, across data sets, high
(low) predictive accuracy by a supervised method would be
associated with high (low) accuracy for the corresponding
clustering algorithm. In this section, we describe our designs
for the experiments to test these hypotheses and the results
we obtained.

4.1 Experiments with Natural Data
To test these hypotheses, we ran the generalized clustering

system with each paradigm/algorithm combination on a bat-
tery of natural data sets. We also evaluated each supervised
algorithm independently by training it and calculating its
predictive accuracy on a separate test set. The independent
variables were the assignment paradigm (for the clustering
tests), the supervised learning algorithm, the data set, and
the number of instances used in training. The dependent
variables were the classification accuracies on unseen data.

We used a standard accuracy metric to evaluate both the
supervised classifiers and the clustering algorithms:

acc(T ) =

∑
xi∈T δ(xi)

|T | ,

where T is the test set, and δ(xi) = 1 if xi is classified
correctly and 0 otherwise.
2Naturally, we also expected that no single algorithm com-
bination would outperform all others on all data sets, but
this is consistent with general findings in machine learning,
and so hardly deserves the status of an hypothesis.



Table 1: Supervised accuracies on four data sets.

Proto Bayes Stump Percept

Promoters 86.0 87.0 70.0 76.0
Iris 49.3 94.7 93.3 46.0
Glass 84.8 79.0 97.6 39.0
Hayes-Roth 32.3 61.5 43.1 79.2

When evaluating accuracy, we trained each classifier on
the labeled data set with the test set removed. Because the
clustering algorithms create their own classes, we added a
step in which each completed cluster was assigned the actual
class of its majority population. For example, if a given clus-
ter consists of 20 instances that are actually class A and 10
that are actually class B, all instances in the cluster would
be declared members of class A. This approach loses evalu-
ation detail, but it let us evaluate each clustering algorithm
against the “correct” clusters.

We selected four data sets from the UCI repository – Pro-
moters, Iris, Glass, and Hayes-Roth – that involved differ-
ent numbers of classes, different numbers of attributes, and
different attribute types (nominal, continuous, or mixed).
Another factor in their secltion was that each led to high
classfication accuracy for one of the supervised methods but
(typically) to lower accuracy for the others, as shown in
Table 1. This differentiation on supervised training data
seemed a prerequisite for testing the predicted correlation
between accuracies for supervised learning and clustering.

Moreover, note that our four supervised methods each has
restricted representational power that is generally limited to
one decision region per class. As a result, the fact that one
such method obtains high accuracy in each of these domains
suggests that each of their classes corresponds to a single
cluster. This lets us assume that the number of classes in
each data set corresponded to the number of clusters, further
increasing the chances of meaningful results.

For each data set, we collected a learning curve using ten-
fold cross-validation, recording results for each increment of
25 data points. For the two largest data sets, we limited
the number of training cases to 500, having observed that
classification accuracy generally leveled off after two or three
hundred instances. Typically, clustering accuracy ceased to
improve early in the learning curve, although the supervised
classification accuracy often continued to improve.

Table 2: Unsupervised accuracies for two alternative
data assignment paradigms (strict/weighted).

Bayes Proto Percept Stump

Iris 10.0/10.0 10.0/10.0 10.0/10.0 10.0/10.0
Promoters 10.0/10.0 10.0/10.0 10.0/10.0 10.0/10.0
Hayes-Roth 10.0/10.0 10.0/10.0 10.0/10.0 10.0/10.0
Glass 10.0/10.0 10.0/10.0 10.0/10.0 10.0/10.0

Recall that our first hypothesis predicted that each super-
vised method would construct more accurate clusters when
combined with its preferred data assignment paradigm. The
results in Table 2, which shows the classification accuracies

Figure 2: Supervised and unsupervised accuracies
for four algorithms on four natural data sets.

for each method-paradigm combination on the four domains,
generally support this hypothesis. In particular, the proto-
type learner and perceptron lists typically fared better when
combined with strict assignment, whereas naive Bayes and
decision stumps did better with weighted assignment. All
but decision stumps showed a substantial difference in their
average accuracies across the four data sets.

Using the preferred assignment paradigm for each induc-
tion algorithm, we proceeded to test our second hypothesis,
that higher (lower) accuracies in supervised mode would be
associated with higher (lower) accuracies on unsupervised
data. To this end, we computed the correlation between
these two accuracies over the 16 algorithm-domain combi-
nations. The resulting correlation coefficient, r = 0.49, was
significant at the *** level and explains 70 percent of the
variance. Figure 2 shows that supervised accuracy is a rea-
sonable predictor of unsupervised accuracy, thus generally
supporting our hypothesis.

4.2 Experiments with Synthetic Data
Our encouraging results with natural data sets shows that

our framework has relevance to real-world clustering prob-
lems, but they can give only limited understanding for the
causes underlying the phenomena. For this reason, we de-
cided to carry out another study that employed synthetic
data designed to reveal the detailed causes of these effects.

One standard explanation for some induction methods
outperforming others relies on the notion of inductive bias,
which reflects the fact that some representational formalisms
can represent certain decision regions more easily than oth-
ers. Since our four supervised learning methods have quite
different inductive biases, we designed four separate learn-
ing tasks, each intended to be easily learned by one of these
methods but not by others.

Each learning task involved two continuous variables and
three classes, with a single contiguous decision region for
each class. Figure 3 (a) shows the decision regions for the
domain designed with decision stumps in mind, whereas Fig-
ure 3 (b) shows the regions for a domain that the prototype
method should easily learn. Some algorithms, especially
naive Bayes, are difficult to foil, but for every supervised



method, we had at least one domain on which it should do
poorly. For each domain, we devised a generator that pro-
duced *** random instances from a uniform distribution for
each class, creating the same number of instances for each
class.

The geometric metaphor clarifies one reason that a given
method should outperform others in both supervised and
unsupervised mode, but it also suggests a reason why the
correlation between behavior on these two tasks is imper-
fect. Conventional wisdom states that clustering is easy
when clusters are well separated but difficult when they are
not. Thus, our data generator also included a parameter
that let us vary systematically vary the separation between
the instances for each class. The predictive variables for each
domain ranged from *** to ***, so we varied the separation
distance from *** to ***.

Although we expected our synthetic domains to reproduce
the positive correlation we observed with natural data, we
also predicted that cluster separation should influence this
effect. In particular, we thought the correlation would be
low when the gap was small, since iterative optimization
would have difficulty assigning instances to the “right” un-
labeled classes. However, the correlation should increase
monotonically with cluster distance, since the process of
finding well-separated cluster should be dominated by the
inductive bias of the supervised learning modules.

Here we need some paragraphs that describe our results on
the synthetic data, maybe including a table with accuracies
but especially a graph that plots correlation as a function of
cluster separation.

5. RELATED WORK
As we noted earlier, there exists a large literature on clus-

tering that others (e.g., Everitt [3]) have reviewed at length.
Much of this work relies on iterative optimization to group
training cases, and there exist many variants beyond the
K-means and expectation-maximization algorithms familiar
to most readers. For instance, Michalski and Stepp’s [10]
Cluster/2 uses logical rule induction to characterize its clus-
ters and assign cases to them. More recently, Zhang et al.
[15] have described the K-harmonic means method, which
operates like K-means but invokes a different distance met-
ric that usually speeds convergence. However, despite this
diversity, researchers have not proposed either theoretical
frameworks for characterizing the space of iterative opti-
mization methods or software frameworks to support their
rapid construction and evaluation.

In the broader arena, there have been some efforts to link
methods for supervised and unsupervised learning. For ex-
ample, Langley and Sage [8] adapted a method for inducing
univariate decision trees to operate on unsupervised data
and thus generate taxonomy, and, more recently, Langley
[6] has described a similar but more sophisticated approach.
The relationship between supervised and unsupervised algo-
rithms for rule learning is more transparent; Martin [9] has
reported one approach that adapts supervised techniques to
let them construct association rules from unlabeled data.
But again, such research has focused on specific algorithms
rather than on general or generative frameworks.

However, other areas of machine learning have seen a few
frameworks of this sort. Langley and Neches [7] developed
Prism, a flexible language for production-system architec-
tures that supported many combinations of performance and

learning algorithms, and later versions of Prodigy [14] in-
cluded a variety of mechanisms for learning search-control
knowledge. For classification tasks, Kohavi et al.’s MLC++
[5] supported a broad set of supervised induction algorithms
that one could invoke with considerable flexibility. The gen-
erative abilities of this framework are apparent from its use
in feature selection and its support for novel combinations
of existing algorithms. The MLC++ effort comes closest to
our own in spirit, both in its goals and its attempt to provide
a flexible software infrastructure for machine learning.

6. CONCLUDING REMARKS
In this paper, we presented a framework for iterative op-

timization approaches to clustering that lets one embed any
supervised learning algorithm as the model-construction com-
ponent. This approach produces some familiar clustering
techniques, like K-means and EM, but it also generates some
novel methods that have not appeared in the literature. The
framework also let us evaluate some hypotheses about the
relation between the resulting clustering methods and their
supervised modules, which we tested using both natural and
synthetic data.

As we predicted, each supervised method had a preferred
data assignment scheme with which it produced more accu-
rate clusters. In particular, clustering practitioners will be
pleased to know that strict assignment works best for the
prototype learner and weighted assigment for naive Bayes,
which corresponds to the popular K-means and EM algo-
rithms. Moreover, we found a strong correlation between
the accuracy of supervised algorithms on natural data sets
and the accuracy of iterative optimizers in which they were
embedded. We augmented these results by running experi-
ments on synthetic data, which gave us control over decision
regions and separation of classes. These studies also pro-
duced a correlation between supervised and unsupervised
accuracy, but failed to reveal an effect of cluster separation.

Clearly, there remains considerable room for additional
research. The framework supports a variety of new clus-
tering algorithms, each intereting in its own right but also
important for testing further our hypotheses about relations
between supervised and unsupervised learning. We should
also carry out additional experiments with synthetic data
that vary systematically other factors that can affect pre-
dictive accuracy, such as irrelevant features and attribute
noise. Finally, we should also explore further the role of
cluster separation and the reason it had no apparent influ-
ence in our studies.

Although our specific results are intriguing, we attach
more importance to the framework itself, which supports
a new direction for studies of clustering mechanisms. We
encourage other researchers to view existing techniques as
examples of some generative framework and to utilize that
framework both to explore the space of clustering meth-
ods and to reveal underlying relations between supervised
and unsupervised approaches to induction. Ultimately, this
strategy should produce a deeper understanding of the clus-
tering process and its role in a broader science of machine
learning.
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