Summarization of Conversational Multi-Party Speech

Michel Galley

Advisor: Kathleen McKeown

Columbia University Department of Computer Science

AAAI/SIGART Doctoral Consortium July 16-17, 2006

- Transcriptions provide poor information access
 - long meeting transcriptions (avg. 15'000 words, 1h.)
 - raw formatting: no sections, paragraphs, etc.
 - useful information is scattered across meeting (not only at the beginning)

	record	ſ
speaker A	i mean so i think pairwise relationships are pretty easy	
speaker B	mm-hmm	
speaker A	you know source destination relations are there other sorts of things that might we might want to record	
speaker C	it's useful to know that that relationship	
speaker A	i think that fits in well with the whole meeting map mapping meetings concept is that's another way of looking at looking at it	
speaker C	interesting	
speaker A	so are there anything other than pairwise	
speaker C	oh well yeah you could have people who are all part of the same football league or uh or chess club or -	
		1

Introduction Why meeting summarization?

• Transcriptions are hard to read

- speech errors, hesitations, etc.
- content-poor conversational expressions:
 "you know", "I mean", "sort of", "kind of", etc.

filler

well i ju- i was just thinking with reference to uh things that have - that bear on the content or the status relations would be the things .. without being exhaustive by any means but just like i said if there's a k- a certain topic that comes up in the meeting and that knowing their relationship will clarify it or .. if there's a certain dynamic that comes up so i mean a person is asked a whole bunch of questions more than you'd usually think they'd be asked and it turns out it's because he's being prepared for a job interview or something like that then it's useful to know that - that relationship.

self repair

content poor phrases

Introduction Two main problems: selection and revision

4

Outline

Content selection

- Previous work
- Research objectives
- Approach overview
- Open questions
- Sentence revision
 - Previous work
 - Research objectives
 - Framework
 - Open questions

Content selection Previous work

- Approaches
 - Extensive previous work: trainable, knowledge rich, IR-based, discourse-based (overview: [Mani and Maybury, 1999])
- Trainable summarizers
 - Binary classification at sentence level (Naive Bayes [Kupiec et al., 1995], etc.)
- Sequence classifiers
 - Markov models (e.g., HMM)
 [Conroy et al., 2005; Maskey and Hirschberg, 2006]
 - Best performing system in recent NIST summarization evaluations.
 - Well suited to written texts (sentences are linearly sequenced).

Content selection Research objectives

- Model selection for sequence classifiers
 - dependency structure, latent variables, network semantics (directed or undirected)
 - models that account for multi-party interaction (3+ speakers, overlapping speech)

Content selection Research objectives

Non-local structure

 model interaction between arbitrary-distant sentences (e.g., QUESTION-ANSWER, OFFER-ACCEPT, CHECK-CONFIRM)

Content selection Model structure: linear vs. skip-chain

Are dynamic conditioning variables really useful?

	$y_{B} = 1$	y _B =0
$y_{A} = 1$	6′792	2′191
y _A =0	1′479	121′591

skip-chain edges

contingency tables chi-sq test very significant (p<.001)

Content selection Approach Overview

Model structure inference

[Galley, McKeown, Hirschberg, Shriberg; ACL-2004]

- Identify speaker-addressee (SA) links, as between QUESTION-ANSWER, OFFER-ACCEPT: given sentence B (e.g., ANSWER), find corresponding sentence A (e.g., QUESTION).
- Rank candidate A parts with log-linear model (0.92 accuracy).

Content selection with inferred graphical model [Galley; EMNLP-2006]

- Classification with sequential and non-sequential classifiers.
- Inference with skip-chain conditional Markov random fields (CRFs) and Bayes nets (BNs).
- CRFs achieved best results.

Three ranking functions to extract an n% summary:

- Binary predictions
 - Only include positive predictions, i.e. $P(y_i = 1|...) \ge .5$ (trim summary if too long)
- Class posteriors for BNs
 - Ignore predictions; rank utterances by $P(y_i = 1 | ...)$
- Class posteriors for CRFs
 - <u>Problem with CRFs</u>: sum of potentials have no probabilistic interpretation, i.e. can't be used to estimate $P(y_i | ...)$.
 - <u>A solution</u>: since CRF and BN are parameterized with the same feature functions, we can:
 - 1. train and decode optimal sequence $(\hat{y}_1, \dots, \hat{y}_T)$ with CRF
 - 2. estimate $P(y_i = 1 | \hat{y}_{1}, \dots, \hat{y}_{i-1}, \dots)$ with BN model

- CRFs outperform equivalent directed models (Bayes nets)
- Skip-chain CRFs outperform linear-chain models
- Ranking by posteriors outperforms 0/1 predictions

		Markov order			
Model	Ranking	k=0	<i>k</i> =1	<i>k</i> =2	<i>k</i> =3
linear-chain BN	0/1 predictions		.241	.267	.267
linear-chain BN	posteriors	.511	.512	.519	.525
skip-chain BN	posteriors		.543	.549	.542
linear-chain CRF	0/1 predictions		.326	.36	.348
linear-chain CRF	posteriors	.511	.53	.548	.54
skip-chain CRF	posteriors		.541	.554	.559

Content selection Open questions

- Do extra hidden variables interact with observation or state variables?
 - topic variables [Barzilay and Lee, 2004]
 - dialog acts (DA) variables, e.g.
 ∈ {STATEMENT, Y/N-QUESTION, CHECK, ...}

- Perform joint inference?
 - speaker-addressee identification and content selection as a joint learning problem (instead of two-step approach)

Real Provide P

Outline

• Utterance selection:

- Previous work
- Research objectives
- Approach overview
- Open questions

Utterance revision:

- Previous work
- Research objectives
- Approach
- Open questions

Sentence revision Previous work: two main categories

- Word-based models [Banko et al., 2000]
 - Word deletion models: $P_{delete}("not") < P_{delete}("also")$
 - Works well with short sentences (e.g., headlines)
 - No direct way of preserving grammaticality: produces ill-formed sentences on long inputs
- Syntax-based models
 [Knight and Marcu, 2000; Turner and Charniak, 2005]
 - Transform syntactic analysis of **f** into a reduced one
 - Output presumably more grammatical
 - Word deletion probabilities not lexicalized:
 - $P_{\text{delete}}(\text{"not"}) = P_{\text{delete}}(\text{"also"})$ (since both adverbs)

- Fully trainable sentence revision model
 - transformational model mapping a full sentence $\mathbf{f} = (f_1, \dots, f_n)$ to a subsequence $\mathbf{c} = (c_1, \dots, c_m)$: $P(\mathbf{c} | \mathbf{f})$
 - fully trainable from (c,f) pairs
- Syntax-driven revision rules
 - syntactic transformation rules to map from c to f, e.g. [Det Adj Noun] → [Det Noun]
- Effective estimation of rule probabilities
 - factorization of rule probabilities: computationally and linguistically motivated
 - Lexicalized compression models,
 e.g. more likely to delete "also" than "not"
 - Integration of any arbitrary feature: IR (TF.IDF), acoustic, etc.

Sentence revision Framework

• Synchronous grammars

- -model the $\mathbf{f} \leftarrow \mathbf{i} \mathbf{c}$ transformation indirectly through their respective syntactic analysis
- -many resources (e.g. parsers) to get $\mathbf{f} \rightarrow \pi(\mathbf{f})$ and $\mathbf{c} \rightarrow \pi(\mathbf{c})$
- easier to define grammaticality and meaning preserving operations on context free grammar (CFG) productions

Sentence revision Rule extraction

- Extracting grammar rules from sentence pairs
 - Previous approaches:
 - assume that π(c) is a trimmed version of π(f),
 i.e., that c is a subsequence of f
 - assumption almost always incorrect → low coverage (e.g., can only use 2.7% of the Ziff-Davis parallel corpus for training [Knight and Marcu, 2000])

Tree pair is discarded because of one word insertion ("recently"), though we could try to learn to compress "the global real estate":

Sentence revision Rule extraction

- Extracting grammar rules from sentence pairs
 - Proposed approach:
 - tree-to-tree alignments (e.g., min. tree edit distance)
 - bijection between tree alignment and grammar rules (synchronous tree substitution grammar)

Full generative story: advantages

- Increased data usage:
 - can align many tree pairs (»2.7%) → more counts for CFG compression rules
 - in practice, most rules are CFG compressions:

- Richer revision rules (non CFG):
 - tree-to-tree rewrite rules: covers many deletion not possible with , such as deleting "the spokesman said" in "S, the spokesman said".

• Generative model P(c,f)

- Make major independence assumptions (similar to [Collins, 1999])
- Introduce bi-lexical dependencies:
 - "real" modifying "estate" : low JJ-deletion probability
 - *"global"* modifying *"estate"* : higher JJ-deletion probability

- Discriminative model P(c|f)
 - any arbitrary feature (TF.IDF, LM score, etc.) weighted with, e.g., SVM, perceptron, linear regression
 - global features computed in post processing stage (n-best re-ranking)

Sentence revision Open questions

- Synchronous grammars
 - how to best factorize rule probabilities?
 prevent data sparseness while avoiding unreasonable independence assumptions
- Text-to-text generation
 - not just deletions, but insertions and substitutions
 (e.g., "a lot of" → "many", etc.)
- Integration with content selection
 - how to balance compression level in content selection and sentence revision
 - choices made in sentence revision can affect selection

- Content selection
 - skip-chain CRFs for content selection [completed]
 - joint inference: skip-chain identification and content selection [future]
- Sentence revision
 - Corpus of 5'000 (sentence, revision) pairs [current]
 - Syntactic compression models [current]
 - Decoding most likely compressed sentence [current]
 - Discriminative re-ranking with arbitrary features (TF.IDF, etc.) [future]
 - From compression to revision [future]

Contributions

- Content selection
 - model of long-distance relationships (speaker-addressee)
 - use of those relationships for better content selection
- Sentence revision
 - alignment between any string pair (**f**,**c**):
 - better corpus coverage (more data)
 - more complex revision operations
 - empirical evaluation of different rule parameterization (lexicalized or not, etc.)
 - re-ranking framework where any arbitrary summarization feature can be added (e.g., TF.IDF)

Acknowledgements

- Thesis committee
 - Julia Hirschberg (chair), Columbia U.
 - Kathleen McKeown (advisor), Columbia U.
 - Owen Rambow, Columbia U.
 - Daniel Ellis, Columbia U.
 - Michael Collins, MIT
- Co-authors
 - Elizabeth Shriberg
 - Eric Fosler-Lussier
 - Hongyan Jing
 - Kevin Knight
 - Daniel Marcu
 - Mark Hopkins

QUESTIONS