A Generalized Query Framework for Geospatial Reasoning

Martin Michalowski University of Southern California/ Information Sciences Institute July 17th 2006

Introduction

- What is geospatial reasoning?
 - The fusion of traditional and nontraditional data sources

AND

The ability to infer information from the integration of these sources

Introduction (cont.)

Traditional data Non-traditional data sources Sources

Switchboard 3

Previous Work

 Constraint Satisfaction Approach to Geospatial Reasoning (Michalowski and Knoblock AAAI-05)

 Showed feasibility of planning techniques for geospatial data integration

BUT

 Abstracts away the problem of data gathering and model selection

Research Proposal

 Create a generalized query framework to answer queries about geospatial entities

- Gathers appropriate data
- Invokes appropriate tools (i.e. CSP solver)
- Selects appropriate models to use
- Provides complete and accurate answers to user queries

Motivating Example

El Segundo CA

Before

After

Integration Framework

(Michalowski and Knoblock 2005)

Composition Problem

Get Image Component

AOI Get Image Get Streets Identify buildings Get Phonebook PB Entries Building locations Solve CSP

Retrieves the satellite imagery of El Segundo

Potential Issues:

Image may not be available
Different images may come from different sources -> which one to choose (operator utility)
A source can produce multiple images

Get Streets Component Area of Interest No data Vector Data Gazetteer Source Validation Failure Reverse Geocode Union Streets

AOI Get Image Get Streets Identify buildings Get Phonebook Model Selector Building locations PB Entries Model Solve CSP

Gathers all of the street information about the AOI

Potential Issues:

Not all streets may be in one source
May need to query multiple sources to get a complete list of streets
Multiple plans can produce street information -> which one to choose (plan utility)

- Street names can also be extracted from maps (Desai et. al 2005)

Identify Buildings Component

Uses the satellite imagery and street information to identify buildings in the imagery

Get Streets

Get Phonebook

Solve CSP

Streets

Model Selector

Model

Get Image

dentify buildings

Building locations

Potential Issues:

- Correct tool needs to be invoked
- May not detect any buildings

Get Phonebook Component

Uses the Superpages, Whitepages and/or Yellowpages to gather phone book information

Potential Issues:

- May need to query all sources to ensure completeness

- Some sources may be unavailable or fail for the given AOI

- Multiple plans can produce phone book information -> which one to choose (plan utility) 12

Model (Constraint) Selector Component

Combines information together to choose a CSP model - Can refine the model by inferring information such as numbering schemes, address policies, etc. - 100-blocking numbering applies to motivating example and can be inferred using: - Landmark information (gazetteer) - Hierarchy of numbering schemes - Combined to infer that the block

numbering scheme does apply ¹³

Composition Problem (cont) Get Streets Get Image Solve CSP Component Streets Model Selector Identify buildings Get Phonebook Building PB PB Entries Model **Building locations** Streets Entries Model Locations AOL Solve CSP Query Failure CSP Solver Unsatisfiable <lat.lon.address> <lat, lon, address>

-Provides complete and accurate answers to user queries (if CSP is solvable)

-Can also augment solutions with additional information (information not requested in the query)

Outstanding Issues

Different actions are available to the system

- Need to model both the actions (operators) and the data produced
- Solution: Hybrid approach of abstract and tuple level representations

Need to deal with source/validation failures

- Requires planning at the data AND operator level
- **Solution**: Interleave planning and execution, replanning only done with tuples that fail validation
- Data inconsistencies may arise across sources that provide the same information
 - Requires the use of utilities both at the plan and operator level
 - Solution: Conflict resolution strategies that combine multiple utility measures (both absolute and relative)

Outstanding Issues (cont.)

- CSP model can be selected based on available information
 - More detailed model leads to more accurate results
 - Solution: Try to infer certain constraints (i.e. numbering schemes) based on the available data
- Need to provide complete and accurate answers
 - Must ensure the user query is answered
 - Solution: Model selection, conflict resolution...

Related Work

Planning for information gathering

- IPEM (Ambros-Ingerson 88)
- OCCAM (Kwok 94)
- PUCCINI (Golden 98)
- SAGE (Knoblock 95)
- PKS (Petrick 04)
- Mediator Systems
 - SIMS (Arens 95)
 - InfoMaster (Dushka 97)
 - Prometheus (Thakkar 05)

Conflict Resolution Strategies (Bleiholder 06)

Progress to Date

- Established feasibility of geospatial data integration using planning techniques
 - Developed a CSP framework to identify buildings in satellite imagery
- Study of related work in planning for information gathering

Determining the correct representation

Prototypical system implemented

Plan for Completion

Fully understand real world problems

- Inferring numbering schemes
- Data retrieval and fusion
- CSP model creation and selection
- Use this understanding to create a general framework that meets all requirements
 - Refine data and operator representation and planning and re-planning techniques

Contributions

- A general planning approach to data integration with incomplete and inconsistent data sources
- A robust planning approach to geospatial data integration
- Operators executed based on validation results
- Previous work on dealing with failures in planning is too general (complete failures)
 - My work would support failures at a finer grained level (tuple level)
- Validation introduces notion of "alternate" plans in the presence of incomplete sources

Open Questions

- Universal Planning vs. Dynamic Replanning?
 Do other conflict resolution strategies
- make sense?
- Are answer accuracy and completeness good evaluation metrics?

Acknowledgements

Craig Knoblock (Advisor) Mark Carman (Initial CSP Model) Berthe Choueiry and Ken Bayer (University of Nebraska – Scaling up and custom solver) Snehal Thakkar (All things) geospatial) Officemates (All things non-research) Colleen van Lent (DC Mentor)

Thank you!