Robust Autonomous Structure-Based Color Learning on a Mobile Robot

Mohan Sridharan

Joint work with Peter Stone
The University of Texas at Austin
smohan@ece.utexas.edu

Sample Video - External

Sample Video - Input

Motivation

- Mobile Robot Vision challenging.
- Real-time requirement: computational and memory resources limited.
- Rapid camera motion.
- Changing illumination conditions.

The Question

- Can a vision-based mobile robot
- with limited computational and memory resources,
- and rapidly varying camera positions,
- operate autonomously in a moderately structured environment,
- under varying illumination conditions,
- by utilizing the structure inherent in its environment?

Talk Overview

- Background Information:
- Test Platform.
- Completed Work:
- Baseline Vision System.
- Autonomous Planned Color Learning.
- Robustness to Illumination Changes.
- Proposed Work.

Initial Test Platform - Sony ERS7

- 20 degrees of freedom.
- Primary sensor CMOS camera.
- IR, touch sensors, accelerometers.
- Wireless LAN.
- 576 MHz processor: frame rate -30 Hz .
- Soccer on $4 m \times 6 m$ field.

Talk Overview

- Background Information.
- Initial Test Platform.
- Completed Work:
- Baseline Vision System.
- Autonomous Planned Color Learning.
- Robustness to Illumination Changes.
- Ongoing Work.

Baseline Vision - I/O

- Input: Image pixels in YCbCr Color space.
- Frame rate: 30 fps.
- Resolution: 208×160.
- Output: Distances and angles to objects.
- Constraints:
- On-board processing: 576 MHz .
- Rapidly varying camera positions.

Baseline Vision - Flowchart

Baseline Vision - Phase 1: Segmentation

- Assign color labels to image pixels.
- Image pixel values 0-255 in each of the three channels.
- Sub-sample and assign color labels for 128*128*128 possible combinations: Color Map.
- Hand-label discrete colors.
- Locally Weighted average - Color map generalization.

Sample Color Map

Sample Images - Color Segmentation

Baseline Vision - Phase 2: Regions

- Run-Length encoding.
- Starting point, length in pixels.
\circ Region Merging.
- Combine run-lengths of same color.
- Maintain properties: pixels, runs.
- Bounding boxes.

- Abstract representation - four corners.
- Maintains properties for further analysis.

Sample Images - Region Detection

Baseline Vision - Phase 2: Objects

- Object Recognition.
- Heuristics on size, shape and color.
- Previously stored bounding box properties.
- Domain knowledge.
- Remove spurious regions.
- Distances and angles: known geometry.

Sample Images - Objects

Sample Video - Objects Superimposed

Baseline Vision - Phase 3: Lines

- Popular approaches: Hough transform, Convolution kernels computationally expensive.
- Domain knowledge.
- Scan lines - greenwhite transitions candidate edge
 pixels.

Baseline Vision - Phase 3: Lines

- Incremental least square fit for lines.
- Efficient and easy to implement.
- Reasonably robust to noise.
- Lines: provide orientation information.
- Line Intersections: used as markers.

Sample Images - Objects + Lines

Related Work - Robot Soccer

- CMU vision system: Basic implementation.
- J. Bruce, IROS 2000.
- German Team vision system: Scan Lines.
- T. Rofer, RoboCup 2003.

Some Problems...

- Systems needs to be re-calibrated:
- Illumination changes.
- Natural light variations: day/night.

- Re-calibration very time consuming.
- More than an hour spent each time...
- Cannot achieve overall goal.

Talk Overview

- Background Information.
- Initial Test Platform.
- Completed Work:
- Baseline Vision System.
- Autonomous Planned Color Learning.
- Robustness to Illumination Changes.
- Ongoing Work.

Related Work - Color Learning

- Autonomous segmentation: Multiple Color maps.
- M. Jungel, RoboCup 2004.
- Offline Color learning using structure: Edges and objects.
- D. Cameroon, RoboCup 2003.
- Hierarchical Bayesian Approach: Color Priors.
- D. Schulz and D. Fox, IROS 2004.

Autonomous Color Learning - Motivation

- Environment structured - use it!
- Inputs:
- Object positions and descriptions.
- Robot starting position.
- Autonomously generate suitable motion sequence - where to move?
- Autonomously learn color map: no prior knowledge of color distributions.
- Has to be as reliable as the hand-labeled map.

Autonomous Color Learning - Approach

- Represent each color as a 3D Gaussian or 3D Histogram: goodness-of-fit test.
- Gaussian:
- Low storage (means, stdevs).
- Generalizes well with few samples.
- Not suitable for multi-modal color distributions.
- Histogram:
- Higher storage.
- Does not generalize well with few samples.
- Suitable for multi-modal distributions.
- Robot selects suitable model.

Autonomous Color Learning - Approach

- Start from known (variable) initial position.
- Motion planning based on object configuration - function minimization.
- Learn colors at each position - hybrid representation.
- Use current color knowledge to localize better - bootstrapping.
- Works for any robot starting position and environmental configuration.

Autonomous Color Learning - Video

- Five minutes instead of an hour or more.

Autonomous Color Learning - Testing

- Inside the lab:

Autonomous Color Learning - Testing

- Outside the lab:
- Case1

Case2

Localization with learned color map - Video

Summary

- Colors learned autonomously.
- 5 mins of robot time instead of an hour or more of human effort.
- Segmentation and localization accuracies comparable to hand-labeled color map.
- Both inside and outside the lab - hybrid representation.
- Motion planning for any starting position and object configuration.

Talk Overview

- Background Information.
- Initial Test Platform.
- Completed Work:
- Baseline Vision System.
- Autonomous Color Learning.
- Robustness to Illumination Changes.
- Ongoing Work.

Illumination Sensitivity - Samples

- Trained under one illumination:

- Under different illumination:

Illumination Sensitivity - Movie...

Related Work - Illumination Invariance

- Sensor and Illuminant models.
- C. Rosenberg, ICCV 2001.
- Time Series Analysis: Aibo.
- S. Lenser, ICRA 2003.
- Mixture of Gaussians: Middle-sized league.
- F. Anzani, RoboCup 2005.

Illumination Invariance - Approach

- Challenges:
- Representing Illumination conditions.
- Detecting a change in illumination condition.
- Representation:
- Distributions in normalized RGB (r, g).
- Color map for each discrete illumination condition.
- Detecting change:
- Distribution of intra-distribution distances.
- KLDivergence as distance measure.

Illumination Invariance - Approach

- Learn color map and collect (r, g) image distributions.
- Compute intraillumination distance distribution and model as Gaussian.

Illumination Invariance - Approach

- Compute average distance between test distribution and known distributions R_avg.

Illumination Invariance - Approach

- If R_avg maps outside the threshold range of known intraillumination distances, accept new illumination condition.
- Else continue with
 current or other known illumination condition.

Illumination Invariance - Example

Illumination Invariance - Summary

- Robot autonomously trains color map(s).
- Significant changes in illumination detected autonomously.
- With three color map(s) robot is able to work under a range of illumination conditions, even those not explicitly trained for.

Adapting to Illumination changes - Video

Completed Work - Summary

- Baseline Vision system.
- Works in real-time.
- Works with rapid camera motion, noisy images.
- Autonomous Planned Color Learning.
- Colors learned online autonomously.
- Drastic time reduction - 5 mins instead of an hour or more.
- Accurate - comparable to hand-labeled map.
- Plans motion sequence based on object configuration.
- Illumination Invariance.
- Autonomously detects change in illumination.
- Adapts by re-learning color map - no human intervention.
- With just three maps works for intermediate illuminations as well.

Talk Overview

- Background Information.
- Initial Test Platform.
o Completed Work:
- Baseline Vision System.
- Autonomous Color Learning.
- Robustness to Illumination Changes.
- Ongoing Work.

Ongoing Work - Overview

- A -> Different Robot Platform.
- B -> Color learning unknown starting point.
- C -> Continuous Illumination adaptation.

Ongoing Work A - Different Robot Platform

- Initial Position Known.
- Known colored regions' positions - world model.
- Challenges:
- Deal with different image quality.
- Deal with different processing and storage capabilities.
- Robot autonomously plans efficient motion sequence and incrementally learns colors in a different setting.

Different Platform - Approach

- Segway ? Stereo camera!
- Exploit available machinery: Try existing planned color learning +illumination invariance approach ?
- Exploit available resources: Try adding additional features ? Edges ? Texture ?

Ongoing Work B - Unknown starting point

- Initial Position unknown.
- Locations of colored regions known world model.
- Challenges:
- Reason about uncertainty while planning efficient motion sequence.
- Learns colors with good failure correction.
- Severely disadvantaged initially - no useful information from the primary sensor.

Unknown Starting Position - Approach

- Extension to the planned color learning task: additional sensory input ?
- Better modeling of the uncertainty.
- Better failure detection
 and recovery mechanisms.
- Bayesian architecture (current approach), POMDPs ?

Ongoing Work C - Continuous illumination adaptation

- Current work with discrete illumination conditions does not handle minor illumination changes.
- Challenges:
- How to detect minor illumination changes ?
- Change current representation for illumination conditions ?
- Cannot have too many color maps - modify them on-the-fly or change representation ?

Where Does this Work Fit in ?

- Robotics ?

○ AI ?

○ Vision ?

- Nowhere, stop right now ${ }^{\circ}$

That's all folks ©

